J. N. M. Soetedjo, M. Osborn, Lucas Adriel Setiawan, Farhan Azka Fadillah, Felicia Tjandra, Kevin Frendy Mulya, Evan Rariel Nehemia, T. Hudaya
{"title":"用催化裂化法处理LDPE废膜制备液体燃料","authors":"J. N. M. Soetedjo, M. Osborn, Lucas Adriel Setiawan, Farhan Azka Fadillah, Felicia Tjandra, Kevin Frendy Mulya, Evan Rariel Nehemia, T. Hudaya","doi":"10.4028/p-1t2bpt","DOIUrl":null,"url":null,"abstract":"Plastic industry development has increased the amount of plastic waste, including LDPE plastic film, therefore LDPE waste processing becomes essential, such as thermal or catalytic cracking. Cracking is the breakdown of complex hydrocarbons into simple and commercial hydrocarbons (C3-C40). The catalytic cracking is preferred due to lower temperatures, which is 200-300°C instead of 500-700°C. In this study, catalyst selection, acid impregnation of catalyst, catalyst loading (wt%), N2-gas-purging, feed-to-solvent weight-ratio, temperature, and reaction time were studied to determine the most suitable process condition to obtain the highest liquid fraction. In this study, the catalytic cracking was conducted at 20 bar with kerosene as solvent, with and without N2-gas-purging at several temperatures (265 and 295°C), solvent-to-feed weight-ratios (5:1 and 4:1), catalyst types (bentonite, SiO2 and ZSM-5), catalyst loading (wt%) (1.0wt%; 5.0wt%; 7.0wt%; 9.0wt%; 10.0wt%), and reaction time (1-3 hours). The best results were with N2-gas-purging using 10.0wt%-bentonite in (5:1) solvent-to-feed weight-ratio for 1 hour at 295οC produced 54.9wt% of liquid fraction and without N2-gas-purging at 265°C produced 54.5wt% of liquid fraction, indicating the possibility of N2-gas-purging exclusion in future studies. Additionally, this study has promoted bentonite as a potentially viable catalyst for LDPE plastic waste catalytic cracking.","PeriodicalId":50368,"journal":{"name":"Industrial and Engineering Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LDPE Film Waste Treatment into Liquid Fuel Using Catalytic Cracking\",\"authors\":\"J. N. M. Soetedjo, M. Osborn, Lucas Adriel Setiawan, Farhan Azka Fadillah, Felicia Tjandra, Kevin Frendy Mulya, Evan Rariel Nehemia, T. Hudaya\",\"doi\":\"10.4028/p-1t2bpt\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plastic industry development has increased the amount of plastic waste, including LDPE plastic film, therefore LDPE waste processing becomes essential, such as thermal or catalytic cracking. Cracking is the breakdown of complex hydrocarbons into simple and commercial hydrocarbons (C3-C40). The catalytic cracking is preferred due to lower temperatures, which is 200-300°C instead of 500-700°C. In this study, catalyst selection, acid impregnation of catalyst, catalyst loading (wt%), N2-gas-purging, feed-to-solvent weight-ratio, temperature, and reaction time were studied to determine the most suitable process condition to obtain the highest liquid fraction. In this study, the catalytic cracking was conducted at 20 bar with kerosene as solvent, with and without N2-gas-purging at several temperatures (265 and 295°C), solvent-to-feed weight-ratios (5:1 and 4:1), catalyst types (bentonite, SiO2 and ZSM-5), catalyst loading (wt%) (1.0wt%; 5.0wt%; 7.0wt%; 9.0wt%; 10.0wt%), and reaction time (1-3 hours). The best results were with N2-gas-purging using 10.0wt%-bentonite in (5:1) solvent-to-feed weight-ratio for 1 hour at 295οC produced 54.9wt% of liquid fraction and without N2-gas-purging at 265°C produced 54.5wt% of liquid fraction, indicating the possibility of N2-gas-purging exclusion in future studies. Additionally, this study has promoted bentonite as a potentially viable catalyst for LDPE plastic waste catalytic cracking.\",\"PeriodicalId\":50368,\"journal\":{\"name\":\"Industrial and Engineering Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial and Engineering Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-1t2bpt\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial and Engineering Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-1t2bpt","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LDPE Film Waste Treatment into Liquid Fuel Using Catalytic Cracking
Plastic industry development has increased the amount of plastic waste, including LDPE plastic film, therefore LDPE waste processing becomes essential, such as thermal or catalytic cracking. Cracking is the breakdown of complex hydrocarbons into simple and commercial hydrocarbons (C3-C40). The catalytic cracking is preferred due to lower temperatures, which is 200-300°C instead of 500-700°C. In this study, catalyst selection, acid impregnation of catalyst, catalyst loading (wt%), N2-gas-purging, feed-to-solvent weight-ratio, temperature, and reaction time were studied to determine the most suitable process condition to obtain the highest liquid fraction. In this study, the catalytic cracking was conducted at 20 bar with kerosene as solvent, with and without N2-gas-purging at several temperatures (265 and 295°C), solvent-to-feed weight-ratios (5:1 and 4:1), catalyst types (bentonite, SiO2 and ZSM-5), catalyst loading (wt%) (1.0wt%; 5.0wt%; 7.0wt%; 9.0wt%; 10.0wt%), and reaction time (1-3 hours). The best results were with N2-gas-purging using 10.0wt%-bentonite in (5:1) solvent-to-feed weight-ratio for 1 hour at 295οC produced 54.9wt% of liquid fraction and without N2-gas-purging at 265°C produced 54.5wt% of liquid fraction, indicating the possibility of N2-gas-purging exclusion in future studies. Additionally, this study has promoted bentonite as a potentially viable catalyst for LDPE plastic waste catalytic cracking.