GBM组学研究进展

U. Maachani, U. Shankavaram, K. Camphausen, A. Tandle
{"title":"GBM组学研究进展","authors":"U. Maachani, U. Shankavaram, K. Camphausen, A. Tandle","doi":"10.4103/2349-3666.240621","DOIUrl":null,"url":null,"abstract":"Glioblastoma multiforme (GBM) is one of the most lethal human cancers and poses a great challenge in the therapeutic interventions of GBM patients worldwide. Despite prominent recent advances in oncology, on an average GBM patients survive 12–15 months with conventional standard of care treatment. To understand the pathophysiology of this disease, recently the research focus has been on omics-based approaches. Advances in high-throughput assay development and bioinformatic techniques have provided new opportunities in the molecular analysis of cancer omics technologies including genomics, transcriptomics, epigenomics, proteomics, and metabolomics. Further, the enormous addition and accessibility of public databases with associated clinical demographic information including tumor histology, patient response and outcome, have profoundly improved our knowledge of the molecular mechanisms driving cancer. In GBM, omics have significantly aided in defining the molecular architecture of tumorigenesis, uncovering relevant subsets of patients whose disease may require different treatments. In this review, we focus on the unique advantages of multifaceted omics technologies and discuss the implications on translational GBM research.","PeriodicalId":34293,"journal":{"name":"Biomedical Research Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in Omics Technologies in GBM\",\"authors\":\"U. Maachani, U. Shankavaram, K. Camphausen, A. Tandle\",\"doi\":\"10.4103/2349-3666.240621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glioblastoma multiforme (GBM) is one of the most lethal human cancers and poses a great challenge in the therapeutic interventions of GBM patients worldwide. Despite prominent recent advances in oncology, on an average GBM patients survive 12–15 months with conventional standard of care treatment. To understand the pathophysiology of this disease, recently the research focus has been on omics-based approaches. Advances in high-throughput assay development and bioinformatic techniques have provided new opportunities in the molecular analysis of cancer omics technologies including genomics, transcriptomics, epigenomics, proteomics, and metabolomics. Further, the enormous addition and accessibility of public databases with associated clinical demographic information including tumor histology, patient response and outcome, have profoundly improved our knowledge of the molecular mechanisms driving cancer. In GBM, omics have significantly aided in defining the molecular architecture of tumorigenesis, uncovering relevant subsets of patients whose disease may require different treatments. In this review, we focus on the unique advantages of multifaceted omics technologies and discuss the implications on translational GBM research.\",\"PeriodicalId\":34293,\"journal\":{\"name\":\"Biomedical Research Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/2349-3666.240621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/2349-3666.240621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多形性胶质母细胞瘤(GBM)是人类最致命的癌症之一,对GBM患者的治疗干预提出了巨大的挑战。尽管肿瘤学最近取得了显著进展,但GBM患者在常规标准护理治疗下平均存活12-15个月。为了了解这种疾病的病理生理学,最近的研究重点是基于组学的方法。高通量分析发展和生物信息学技术的进步为癌症组学技术的分子分析提供了新的机会,包括基因组学、转录组学、表观基因组学、蛋白质组学和代谢组学。此外,包括肿瘤组织学、患者反应和预后在内的相关临床人口学信息的公共数据库的大量增加和可访问性,极大地提高了我们对驱动癌症的分子机制的认识。在GBM中,组学在定义肿瘤发生的分子结构方面有重要的帮助,揭示了可能需要不同治疗的患者的相关亚群。在这篇综述中,我们重点介绍了多方面组学技术的独特优势,并讨论了其对GBM转化研究的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advances in Omics Technologies in GBM
Glioblastoma multiforme (GBM) is one of the most lethal human cancers and poses a great challenge in the therapeutic interventions of GBM patients worldwide. Despite prominent recent advances in oncology, on an average GBM patients survive 12–15 months with conventional standard of care treatment. To understand the pathophysiology of this disease, recently the research focus has been on omics-based approaches. Advances in high-throughput assay development and bioinformatic techniques have provided new opportunities in the molecular analysis of cancer omics technologies including genomics, transcriptomics, epigenomics, proteomics, and metabolomics. Further, the enormous addition and accessibility of public databases with associated clinical demographic information including tumor histology, patient response and outcome, have profoundly improved our knowledge of the molecular mechanisms driving cancer. In GBM, omics have significantly aided in defining the molecular architecture of tumorigenesis, uncovering relevant subsets of patients whose disease may require different treatments. In this review, we focus on the unique advantages of multifaceted omics technologies and discuss the implications on translational GBM research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信