Di‐Cheng Zhu, Qing Wang, R. Weinberg, Peter A. Cawood, Zhidan Zhao, Z. Hou, X. Mo
{"title":"西藏南部冈底斯基记录的大陆地壳生长过程","authors":"Di‐Cheng Zhu, Qing Wang, R. Weinberg, Peter A. Cawood, Zhidan Zhao, Z. Hou, X. Mo","doi":"10.1146/annurev-earth-032320-110452","DOIUrl":null,"url":null,"abstract":"The continental crust in the overriding plate of the India-Asia collision zone in southern Tibet is characterized by an overthickened layer of felsic composition with an underlying granulite-eclogite layer. A large data set indicates that this crust experienced magmatism from 245 to 10 Ma, as recorded by the Gangdese Batholith. Magmatism was punctuated by flare-ups at 185−170, 90−75, and 55−45 Ma caused by a combination of external and internal factors. The growth of this crust starts with a period dominated by fractional crystallization and the formation of voluminous (ultra)mafic arc cumulates in the lower crust during subduction, followed by their melting during late-subduction and collision, due to changes in convergence rate. This combined accumulation-melting process resulted in the vertical stratification and density sorting of the Gangdese crust. Comparisons with other similarly thickened collision zones suggests that this is a general process that leads to the stabilization of continental crust. ▪ The Gangdese Batholith records the time-integrated development of the world's thickest crust, reaching greater than 50 km at 55–45 Ma and greater than 70 km after 32 Ma. ▪ The Gangdese Batholith records three magmatic flare-ups in response to distinct drivers; the last one at 55−45 Ma marks the arrival of India. ▪ Magmatism was first dominated by fractional crystallization (accumulation) followed by crustal melting: the accumulation-melting process. ▪ Accumulation-melting in other collision zones provides a general process for vertical stratification and stabilization of continental crust.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"1 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Continental Crustal Growth Processes Recorded in the Gangdese Batholith, Southern Tibet\",\"authors\":\"Di‐Cheng Zhu, Qing Wang, R. Weinberg, Peter A. Cawood, Zhidan Zhao, Z. Hou, X. Mo\",\"doi\":\"10.1146/annurev-earth-032320-110452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The continental crust in the overriding plate of the India-Asia collision zone in southern Tibet is characterized by an overthickened layer of felsic composition with an underlying granulite-eclogite layer. A large data set indicates that this crust experienced magmatism from 245 to 10 Ma, as recorded by the Gangdese Batholith. Magmatism was punctuated by flare-ups at 185−170, 90−75, and 55−45 Ma caused by a combination of external and internal factors. The growth of this crust starts with a period dominated by fractional crystallization and the formation of voluminous (ultra)mafic arc cumulates in the lower crust during subduction, followed by their melting during late-subduction and collision, due to changes in convergence rate. This combined accumulation-melting process resulted in the vertical stratification and density sorting of the Gangdese crust. Comparisons with other similarly thickened collision zones suggests that this is a general process that leads to the stabilization of continental crust. ▪ The Gangdese Batholith records the time-integrated development of the world's thickest crust, reaching greater than 50 km at 55–45 Ma and greater than 70 km after 32 Ma. ▪ The Gangdese Batholith records three magmatic flare-ups in response to distinct drivers; the last one at 55−45 Ma marks the arrival of India. ▪ Magmatism was first dominated by fractional crystallization (accumulation) followed by crustal melting: the accumulation-melting process. ▪ Accumulation-melting in other collision zones provides a general process for vertical stratification and stabilization of continental crust.\",\"PeriodicalId\":8034,\"journal\":{\"name\":\"Annual Review of Earth and Planetary Sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Earth and Planetary Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-earth-032320-110452\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Earth and Planetary Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1146/annurev-earth-032320-110452","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Continental Crustal Growth Processes Recorded in the Gangdese Batholith, Southern Tibet
The continental crust in the overriding plate of the India-Asia collision zone in southern Tibet is characterized by an overthickened layer of felsic composition with an underlying granulite-eclogite layer. A large data set indicates that this crust experienced magmatism from 245 to 10 Ma, as recorded by the Gangdese Batholith. Magmatism was punctuated by flare-ups at 185−170, 90−75, and 55−45 Ma caused by a combination of external and internal factors. The growth of this crust starts with a period dominated by fractional crystallization and the formation of voluminous (ultra)mafic arc cumulates in the lower crust during subduction, followed by their melting during late-subduction and collision, due to changes in convergence rate. This combined accumulation-melting process resulted in the vertical stratification and density sorting of the Gangdese crust. Comparisons with other similarly thickened collision zones suggests that this is a general process that leads to the stabilization of continental crust. ▪ The Gangdese Batholith records the time-integrated development of the world's thickest crust, reaching greater than 50 km at 55–45 Ma and greater than 70 km after 32 Ma. ▪ The Gangdese Batholith records three magmatic flare-ups in response to distinct drivers; the last one at 55−45 Ma marks the arrival of India. ▪ Magmatism was first dominated by fractional crystallization (accumulation) followed by crustal melting: the accumulation-melting process. ▪ Accumulation-melting in other collision zones provides a general process for vertical stratification and stabilization of continental crust.
期刊介绍:
Since its establishment in 1973, the Annual Review of Earth and Planetary Sciences has been dedicated to providing comprehensive coverage of advancements in the field. This esteemed publication examines various aspects of earth and planetary sciences, encompassing climate, environment, geological hazards, planet formation, and the evolution of life. To ensure wider accessibility, the latest volume of the journal has transitioned from a gated model to open access through the Subscribe to Open program by Annual Reviews. Consequently, all articles published in this volume are now available under the Creative Commons Attribution (CC BY) license.