{"title":"黄瓜核糖体失活蛋白的表达分析","authors":"Liuyi Dang, P. Rougé, E. Damme","doi":"10.16476/J.PIBB.2017.0311","DOIUrl":null,"url":null,"abstract":"Ribosome-inactivating proteins (RIPs) are a class of cytotoxic enzymes which possess highly specific rRNA N-glycosidase activity and are capable of catalytically inactivating prokaryotic or eukaryotic ribosomes. Due to their unique biological activities, RIPs have been considered to have great potential in medical and agricultural applications. The cucumber genome accommodates two genes encoding type 2 ribosome-inactivating proteins, further referred to as CumsaAB1 and CumsaAB2. Type 2 RIPs, represented by ricin, usually consist of two peptides linked by a disulfide bridge. A chain with N-glycosidase activity and B chain with carbohydrate-binding activity. In this study, the expression of the cucumber RIPs was analyzed. Sequence analysis showed that CumsaAB1 is synthesized with a signal peptide and subcellular localization studies further confirmed that the protein is expressed extracellularly, following the secretory pathway. Analyses of the transcript levels in various tissues during cucumber development showed that CumsaAB1 is present at extremely low levels in most tissues while the expression of CumsaAB2 is much higher, especially in leaves from plants at first-true-leaf stage and plants at the onset of flowering. Molecular modelling of the RIP sequences was performed to unravel the three-dimensional conformation of cucumber RIPs and their carbohydrate-binding sites. This study provided valuable information on the subcellular localization, the tissue-specific expression and the structure of RIPs from cucumber plants.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Expression analysis of ribosome-inactivating proteins from cucumber\",\"authors\":\"Liuyi Dang, P. Rougé, E. Damme\",\"doi\":\"10.16476/J.PIBB.2017.0311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ribosome-inactivating proteins (RIPs) are a class of cytotoxic enzymes which possess highly specific rRNA N-glycosidase activity and are capable of catalytically inactivating prokaryotic or eukaryotic ribosomes. Due to their unique biological activities, RIPs have been considered to have great potential in medical and agricultural applications. The cucumber genome accommodates two genes encoding type 2 ribosome-inactivating proteins, further referred to as CumsaAB1 and CumsaAB2. Type 2 RIPs, represented by ricin, usually consist of two peptides linked by a disulfide bridge. A chain with N-glycosidase activity and B chain with carbohydrate-binding activity. In this study, the expression of the cucumber RIPs was analyzed. Sequence analysis showed that CumsaAB1 is synthesized with a signal peptide and subcellular localization studies further confirmed that the protein is expressed extracellularly, following the secretory pathway. Analyses of the transcript levels in various tissues during cucumber development showed that CumsaAB1 is present at extremely low levels in most tissues while the expression of CumsaAB2 is much higher, especially in leaves from plants at first-true-leaf stage and plants at the onset of flowering. Molecular modelling of the RIP sequences was performed to unravel the three-dimensional conformation of cucumber RIPs and their carbohydrate-binding sites. This study provided valuable information on the subcellular localization, the tissue-specific expression and the structure of RIPs from cucumber plants.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.16476/J.PIBB.2017.0311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.16476/J.PIBB.2017.0311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
核糖体失活蛋白(RIPs)是一类细胞毒性酶,具有高度特异性的rRNA n -糖苷酶活性,能够催化失活原核或真核核糖体。由于其独特的生物活性,rip被认为在医学和农业应用方面具有巨大的潜力。黄瓜基因组包含两个编码2型核糖体失活蛋白的基因,进一步称为CumsaAB1和CumsaAB2。2型rip,以蓖麻毒素为代表,通常由两个由二硫桥连接的肽组成。A链具有n -糖苷酶活性,B链具有碳水化合物结合活性。本研究分析了黄瓜rip的表达情况。序列分析表明,CumsaAB1是由一个信号肽合成的,亚细胞定位研究进一步证实了该蛋白在细胞外表达,遵循分泌途径。对黄瓜发育过程中各组织中CumsaAB1的表达水平分析表明,CumsaAB1在大多数组织中的表达水平极低,而CumsaAB2的表达水平则高得多,尤其是在初真叶期和花期植物的叶片中。对黄瓜RIP序列进行了分子建模,以揭示其三维构象及其碳水化合物结合位点。本研究为黄瓜植物中rip的亚细胞定位、组织特异性表达和结构提供了有价值的信息。
Expression analysis of ribosome-inactivating proteins from cucumber
Ribosome-inactivating proteins (RIPs) are a class of cytotoxic enzymes which possess highly specific rRNA N-glycosidase activity and are capable of catalytically inactivating prokaryotic or eukaryotic ribosomes. Due to their unique biological activities, RIPs have been considered to have great potential in medical and agricultural applications. The cucumber genome accommodates two genes encoding type 2 ribosome-inactivating proteins, further referred to as CumsaAB1 and CumsaAB2. Type 2 RIPs, represented by ricin, usually consist of two peptides linked by a disulfide bridge. A chain with N-glycosidase activity and B chain with carbohydrate-binding activity. In this study, the expression of the cucumber RIPs was analyzed. Sequence analysis showed that CumsaAB1 is synthesized with a signal peptide and subcellular localization studies further confirmed that the protein is expressed extracellularly, following the secretory pathway. Analyses of the transcript levels in various tissues during cucumber development showed that CumsaAB1 is present at extremely low levels in most tissues while the expression of CumsaAB2 is much higher, especially in leaves from plants at first-true-leaf stage and plants at the onset of flowering. Molecular modelling of the RIP sequences was performed to unravel the three-dimensional conformation of cucumber RIPs and their carbohydrate-binding sites. This study provided valuable information on the subcellular localization, the tissue-specific expression and the structure of RIPs from cucumber plants.