Eduardo Lorenzo, Rodrigo Moretón, Jorge Solorzano, Francisco Martinez-Moreno, Miguel del Pozo, Mikel Muñoz
{"title":"大型光伏组件样品的户外测试程序","authors":"Eduardo Lorenzo, Rodrigo Moretón, Jorge Solorzano, Francisco Martinez-Moreno, Miguel del Pozo, Mikel Muñoz","doi":"10.1002/pip.3731","DOIUrl":null,"url":null,"abstract":"<p>STC power control of PV module supply requires testing large samples of modules with low uncertainty. This paper analyses the feasibility of outdoor measurements with the modules kept at their operating positions. The classical procedure of recording <i>I-V</i> curves and translating them to STC in accordance with IEC-60891:2021 using the cell temperature directly observed at a few points of the rear of the module entails expanded uncertainties larger than 3% (k = 2), which is too much for this procedure being accepted in quality controls with contractual consequences. A convenient procedure for overcoming this barrier consists in comparing the <i>I-V</i> curves of a tested and a reference module of the same type, both working under the same operating conditions. The latter is mostly secured if they are in adjacent positions. However, when the procedure is applied to large samples of PV modules kept in their operating positions, the distance between both modules can reach tens of meters and significant inter-module temperature differences can arise. A method for counterbalancing these differences consists of correcting the measured power values by considering the temperature difference observed at the back-sheet centres of the tested and the reference modules. That also provides clues to estimating the uncertainty of the results. This procedure has been applied in seven testing campaigns, carried out at commercial PV plants. Dedicated instrumentation, based on two radio linked <i>I-V</i> tracers, allowing the simultaneous measurement of the <i>I-V</i> curves and of the temperature at the centres of the reference and the tested modules, has been developed for that. The resulting uncertainties are similar to those corresponding to high-quality solar simulators and low enough for dealing, in practice, with strict quality control requirements.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 1","pages":"14-24"},"PeriodicalIF":8.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On outdoor testing procedures of large samples of PV modules\",\"authors\":\"Eduardo Lorenzo, Rodrigo Moretón, Jorge Solorzano, Francisco Martinez-Moreno, Miguel del Pozo, Mikel Muñoz\",\"doi\":\"10.1002/pip.3731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>STC power control of PV module supply requires testing large samples of modules with low uncertainty. This paper analyses the feasibility of outdoor measurements with the modules kept at their operating positions. The classical procedure of recording <i>I-V</i> curves and translating them to STC in accordance with IEC-60891:2021 using the cell temperature directly observed at a few points of the rear of the module entails expanded uncertainties larger than 3% (k = 2), which is too much for this procedure being accepted in quality controls with contractual consequences. A convenient procedure for overcoming this barrier consists in comparing the <i>I-V</i> curves of a tested and a reference module of the same type, both working under the same operating conditions. The latter is mostly secured if they are in adjacent positions. However, when the procedure is applied to large samples of PV modules kept in their operating positions, the distance between both modules can reach tens of meters and significant inter-module temperature differences can arise. A method for counterbalancing these differences consists of correcting the measured power values by considering the temperature difference observed at the back-sheet centres of the tested and the reference modules. That also provides clues to estimating the uncertainty of the results. This procedure has been applied in seven testing campaigns, carried out at commercial PV plants. Dedicated instrumentation, based on two radio linked <i>I-V</i> tracers, allowing the simultaneous measurement of the <i>I-V</i> curves and of the temperature at the centres of the reference and the tested modules, has been developed for that. The resulting uncertainties are similar to those corresponding to high-quality solar simulators and low enough for dealing, in practice, with strict quality control requirements.</p>\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"32 1\",\"pages\":\"14-24\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pip.3731\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3731","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
On outdoor testing procedures of large samples of PV modules
STC power control of PV module supply requires testing large samples of modules with low uncertainty. This paper analyses the feasibility of outdoor measurements with the modules kept at their operating positions. The classical procedure of recording I-V curves and translating them to STC in accordance with IEC-60891:2021 using the cell temperature directly observed at a few points of the rear of the module entails expanded uncertainties larger than 3% (k = 2), which is too much for this procedure being accepted in quality controls with contractual consequences. A convenient procedure for overcoming this barrier consists in comparing the I-V curves of a tested and a reference module of the same type, both working under the same operating conditions. The latter is mostly secured if they are in adjacent positions. However, when the procedure is applied to large samples of PV modules kept in their operating positions, the distance between both modules can reach tens of meters and significant inter-module temperature differences can arise. A method for counterbalancing these differences consists of correcting the measured power values by considering the temperature difference observed at the back-sheet centres of the tested and the reference modules. That also provides clues to estimating the uncertainty of the results. This procedure has been applied in seven testing campaigns, carried out at commercial PV plants. Dedicated instrumentation, based on two radio linked I-V tracers, allowing the simultaneous measurement of the I-V curves and of the temperature at the centres of the reference and the tested modules, has been developed for that. The resulting uncertainties are similar to those corresponding to high-quality solar simulators and low enough for dealing, in practice, with strict quality control requirements.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.