{"title":"p -糖蛋白/ABCB1/MDR1在人癌细胞中的调控作用","authors":"K. Katayama, K. Noguchi, Y. Sugimoto","doi":"10.1155/2014/476974","DOIUrl":null,"url":null,"abstract":"Multidrug resistance (MDR) in cancer cells is a phenotype whereby cells display reduced sensitivity to anticancer drugs, based on a variety of mechanisms, including an increase in drug efflux, the reduction of drug uptake, the activation of cell growth and survival signaling, the promotion of DNA repair, and the inhibition of apoptosis signaling. Increased expression of the plasma membrane drug efflux pumps, the ATP-binding cassette (ABC) transporters, is involved in MDR. P-Glycoprotein/ABCB1 is a member of the ABC transporter family, and facilitates the efflux of various anticancer drugs, including anthracyclines, vinca alkaloids, epipodophyllotoxins, taxanes, and kinase inhibitors, from cells. P-Glycoprotein is also expressed in normal tissues and cells, including the kidney, liver, colon, and adrenal gland, to transport and/or secrete substrates and at the blood-brain, blood-placenta, and blood-testis barriers to protect these tissues from toxic substances. To understand the mechanistic functions of P-glycoprotein and to overcome MDR, investigators have identified the substrates and competitive inhibitors of P-glycoprotein. Recently, we and other groups reported associations between cellular signaling pathways and the expression, stability, degradation, localization, and activity of P-glycoprotein. The present review summarizes the currently available information about the transcriptional and posttranslational regulation of P-glycoprotein expression and function.","PeriodicalId":19156,"journal":{"name":"New Journal of Science","volume":"25 2 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"104","resultStr":"{\"title\":\"Regulations of P-Glycoprotein/ABCB1/MDR1 in Human Cancer Cells\",\"authors\":\"K. Katayama, K. Noguchi, Y. Sugimoto\",\"doi\":\"10.1155/2014/476974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multidrug resistance (MDR) in cancer cells is a phenotype whereby cells display reduced sensitivity to anticancer drugs, based on a variety of mechanisms, including an increase in drug efflux, the reduction of drug uptake, the activation of cell growth and survival signaling, the promotion of DNA repair, and the inhibition of apoptosis signaling. Increased expression of the plasma membrane drug efflux pumps, the ATP-binding cassette (ABC) transporters, is involved in MDR. P-Glycoprotein/ABCB1 is a member of the ABC transporter family, and facilitates the efflux of various anticancer drugs, including anthracyclines, vinca alkaloids, epipodophyllotoxins, taxanes, and kinase inhibitors, from cells. P-Glycoprotein is also expressed in normal tissues and cells, including the kidney, liver, colon, and adrenal gland, to transport and/or secrete substrates and at the blood-brain, blood-placenta, and blood-testis barriers to protect these tissues from toxic substances. To understand the mechanistic functions of P-glycoprotein and to overcome MDR, investigators have identified the substrates and competitive inhibitors of P-glycoprotein. Recently, we and other groups reported associations between cellular signaling pathways and the expression, stability, degradation, localization, and activity of P-glycoprotein. The present review summarizes the currently available information about the transcriptional and posttranslational regulation of P-glycoprotein expression and function.\",\"PeriodicalId\":19156,\"journal\":{\"name\":\"New Journal of Science\",\"volume\":\"25 2 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"104\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2014/476974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/476974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Regulations of P-Glycoprotein/ABCB1/MDR1 in Human Cancer Cells
Multidrug resistance (MDR) in cancer cells is a phenotype whereby cells display reduced sensitivity to anticancer drugs, based on a variety of mechanisms, including an increase in drug efflux, the reduction of drug uptake, the activation of cell growth and survival signaling, the promotion of DNA repair, and the inhibition of apoptosis signaling. Increased expression of the plasma membrane drug efflux pumps, the ATP-binding cassette (ABC) transporters, is involved in MDR. P-Glycoprotein/ABCB1 is a member of the ABC transporter family, and facilitates the efflux of various anticancer drugs, including anthracyclines, vinca alkaloids, epipodophyllotoxins, taxanes, and kinase inhibitors, from cells. P-Glycoprotein is also expressed in normal tissues and cells, including the kidney, liver, colon, and adrenal gland, to transport and/or secrete substrates and at the blood-brain, blood-placenta, and blood-testis barriers to protect these tissues from toxic substances. To understand the mechanistic functions of P-glycoprotein and to overcome MDR, investigators have identified the substrates and competitive inhibitors of P-glycoprotein. Recently, we and other groups reported associations between cellular signaling pathways and the expression, stability, degradation, localization, and activity of P-glycoprotein. The present review summarizes the currently available information about the transcriptional and posttranslational regulation of P-glycoprotein expression and function.