{"title":"在线学习环境中使用社会网络分析检测社区:系统文献综述","authors":"Sahar Yassine, S. Kadry, M. Sicilia","doi":"10.1002/widm.1431","DOIUrl":null,"url":null,"abstract":"Uncovering community structure has made a significant advancement in explaining, analyzing, and forecasting behaviors and dynamics of networks related to different fields in sociology, criminology, biology, medicine, communication, economics, and academia. Detecting and clustering communities is a powerful step toward identifying the structural properties and the behavioral patterns in social networks. Recently, online learning has been progressively adopted by a lot of educational practices which raise many questions about assessing the learners' engagement, collaboration, and behaviors in the new emerging learning communities. This systematic literature review aims to assess the use of community detection techniques in analyzing the network's structure in online learning environments. It provides a comprehensive overview of the existing research that adopted those techniques with identifying the educational objectives behind their application as well as suggesting possible future research directions. Our analysis covered 65 studies that found in the literature and applied different community discovery techniques on various types of online learning environments to analyze their users' interactions patterns. Our review revealed the potential of this field in improving educational practices and decisions and in utilizing the massive amount of data generated from interacting with those environments. Finally, we highlighted the need to include automated community discovery techniques in online learning environments to facilitate and enhance their use as well as we stressed on the urge for further advance research to uncover a lot of hidden opportunities.","PeriodicalId":48970,"journal":{"name":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","volume":"89 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2021-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Detecting communities using social network analysis in online learning environments: Systematic literature review\",\"authors\":\"Sahar Yassine, S. Kadry, M. Sicilia\",\"doi\":\"10.1002/widm.1431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Uncovering community structure has made a significant advancement in explaining, analyzing, and forecasting behaviors and dynamics of networks related to different fields in sociology, criminology, biology, medicine, communication, economics, and academia. Detecting and clustering communities is a powerful step toward identifying the structural properties and the behavioral patterns in social networks. Recently, online learning has been progressively adopted by a lot of educational practices which raise many questions about assessing the learners' engagement, collaboration, and behaviors in the new emerging learning communities. This systematic literature review aims to assess the use of community detection techniques in analyzing the network's structure in online learning environments. It provides a comprehensive overview of the existing research that adopted those techniques with identifying the educational objectives behind their application as well as suggesting possible future research directions. Our analysis covered 65 studies that found in the literature and applied different community discovery techniques on various types of online learning environments to analyze their users' interactions patterns. Our review revealed the potential of this field in improving educational practices and decisions and in utilizing the massive amount of data generated from interacting with those environments. Finally, we highlighted the need to include automated community discovery techniques in online learning environments to facilitate and enhance their use as well as we stressed on the urge for further advance research to uncover a lot of hidden opportunities.\",\"PeriodicalId\":48970,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2021-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/widm.1431\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/widm.1431","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Detecting communities using social network analysis in online learning environments: Systematic literature review
Uncovering community structure has made a significant advancement in explaining, analyzing, and forecasting behaviors and dynamics of networks related to different fields in sociology, criminology, biology, medicine, communication, economics, and academia. Detecting and clustering communities is a powerful step toward identifying the structural properties and the behavioral patterns in social networks. Recently, online learning has been progressively adopted by a lot of educational practices which raise many questions about assessing the learners' engagement, collaboration, and behaviors in the new emerging learning communities. This systematic literature review aims to assess the use of community detection techniques in analyzing the network's structure in online learning environments. It provides a comprehensive overview of the existing research that adopted those techniques with identifying the educational objectives behind their application as well as suggesting possible future research directions. Our analysis covered 65 studies that found in the literature and applied different community discovery techniques on various types of online learning environments to analyze their users' interactions patterns. Our review revealed the potential of this field in improving educational practices and decisions and in utilizing the massive amount of data generated from interacting with those environments. Finally, we highlighted the need to include automated community discovery techniques in online learning environments to facilitate and enhance their use as well as we stressed on the urge for further advance research to uncover a lot of hidden opportunities.
期刊介绍:
The goals of Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery (WIREs DMKD) are multifaceted. Firstly, the journal aims to provide a comprehensive overview of the current state of data mining and knowledge discovery by featuring ongoing reviews authored by leading researchers. Secondly, it seeks to highlight the interdisciplinary nature of the field by presenting articles from diverse perspectives, covering various application areas such as technology, business, healthcare, education, government, society, and culture. Thirdly, WIREs DMKD endeavors to keep pace with the rapid advancements in data mining and knowledge discovery through regular content updates. Lastly, the journal strives to promote active engagement in the field by presenting its accomplishments and challenges in an accessible manner to a broad audience. The content of WIREs DMKD is intended to benefit upper-level undergraduate and postgraduate students, teaching and research professors in academic programs, as well as scientists and research managers in industry.