锥形动脉支架疲劳性能的有限元分析

Q4 Biochemistry, Genetics and Molecular Biology
Xiang Shen, Hongfei Zhu, Ji Song, Jiabao Jiang, Deng Yongquan
{"title":"锥形动脉支架疲劳性能的有限元分析","authors":"Xiang Shen, Hongfei Zhu, Ji Song, Jiabao Jiang, Deng Yongquan","doi":"10.32604/MCB.2019.05737","DOIUrl":null,"url":null,"abstract":"In order to open up the blocked lumen and remodel the blood environment, vascular stents were usually used to transplant into narrowed blood vessels. Due to its minimally invasive and highly efficiency, stenting has achieved great success in the treatment of cardiovascular diseases. However, failure of stents due to its fatigue will damage the arterial wall, leading to adverse reactions such as thrombosis and in-stent restenosis (ISR), which severely limited its long-term outcome. Therefore, it was very important to predict the service life of stents, especially in tapered arteries. \nFEA was adopted to study the effects of arterial tapering and stent material on the fatigue life of stents. Balloon-stent-plaque-vessel coupling systems were established to simulate the working environment of stents in vivo. Five different tapered vessel models were established to study the vessel tapering level on the fatigue life of stents. Besides, the fatigue life of 316L stainless steel stent and L605 cobalt-chromium (Co-Cr) alloy stent deployed into a 0.43° tapered vessel were analyzed and compared. The Goodman diagram method was adopted to evaluate the fatigue resistance of stents. \nResults showed that the stress concentration was found on the inner crown of the strut when the stent was subjected to pulsating blood pressure. It was similar to the stress distribution on the stent after expansion. This also indicated that the crown of the strut played a decisive role in the long-term efficacy of the stent. The maximum average stress of Co-Cr alloy stent was higher than 316L stainless stent. However, the fatigue resistance of stents was improved by simply changing stent material from 316L stainless to L605 cobalt-chromium alloy. So the L605 Co-Cr alloy stent can withstand greater stress without fatigue. In addition, the tapering of the vessel will also affect the fatigue performance of the stent. The stent implantation in tapered vessels could lead to greater residual stress and shorter fatigue life of the stent. With the tapering level gradually increased, the minimum fatigue safety factor of the stent decreased, which indicated the stent was more likely to fatigue. Compared to a straight vessel, the fatigue life of the stent was shortened by 9.8%, when it was deployed in a 1.13° tapered vessel. \nThe obtained results showed that finite element analysis was an effective tool to predict stent fatigue life. The method that predicted stent fatigue life in tapered vessels can help clinicians select stents that are more suitable for tapered vessels and help stent engineers design stents that are more resistant to fatigue.","PeriodicalId":48719,"journal":{"name":"Molecular & Cellular Biomechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Finite Element Analysis of Fatigue Behavior of Stent in Tapered Arteries\",\"authors\":\"Xiang Shen, Hongfei Zhu, Ji Song, Jiabao Jiang, Deng Yongquan\",\"doi\":\"10.32604/MCB.2019.05737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to open up the blocked lumen and remodel the blood environment, vascular stents were usually used to transplant into narrowed blood vessels. Due to its minimally invasive and highly efficiency, stenting has achieved great success in the treatment of cardiovascular diseases. However, failure of stents due to its fatigue will damage the arterial wall, leading to adverse reactions such as thrombosis and in-stent restenosis (ISR), which severely limited its long-term outcome. Therefore, it was very important to predict the service life of stents, especially in tapered arteries. \\nFEA was adopted to study the effects of arterial tapering and stent material on the fatigue life of stents. Balloon-stent-plaque-vessel coupling systems were established to simulate the working environment of stents in vivo. Five different tapered vessel models were established to study the vessel tapering level on the fatigue life of stents. Besides, the fatigue life of 316L stainless steel stent and L605 cobalt-chromium (Co-Cr) alloy stent deployed into a 0.43° tapered vessel were analyzed and compared. The Goodman diagram method was adopted to evaluate the fatigue resistance of stents. \\nResults showed that the stress concentration was found on the inner crown of the strut when the stent was subjected to pulsating blood pressure. It was similar to the stress distribution on the stent after expansion. This also indicated that the crown of the strut played a decisive role in the long-term efficacy of the stent. The maximum average stress of Co-Cr alloy stent was higher than 316L stainless stent. However, the fatigue resistance of stents was improved by simply changing stent material from 316L stainless to L605 cobalt-chromium alloy. So the L605 Co-Cr alloy stent can withstand greater stress without fatigue. In addition, the tapering of the vessel will also affect the fatigue performance of the stent. The stent implantation in tapered vessels could lead to greater residual stress and shorter fatigue life of the stent. With the tapering level gradually increased, the minimum fatigue safety factor of the stent decreased, which indicated the stent was more likely to fatigue. Compared to a straight vessel, the fatigue life of the stent was shortened by 9.8%, when it was deployed in a 1.13° tapered vessel. \\nThe obtained results showed that finite element analysis was an effective tool to predict stent fatigue life. The method that predicted stent fatigue life in tapered vessels can help clinicians select stents that are more suitable for tapered vessels and help stent engineers design stents that are more resistant to fatigue.\",\"PeriodicalId\":48719,\"journal\":{\"name\":\"Molecular & Cellular Biomechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular & Cellular Biomechanics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.32604/MCB.2019.05737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Biomechanics","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.32604/MCB.2019.05737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1

摘要

为了打开阻塞的管腔,重塑血液环境,通常采用血管支架移植到狭窄的血管中。由于其微创、高效的特点,支架置入术在心血管疾病的治疗中取得了巨大的成功。然而,支架因疲劳而失效会损伤动脉壁,导致血栓形成、支架内再狭窄(ISR)等不良反应,严重限制了其远期疗效。因此,预测支架的使用寿命,尤其是锥形动脉支架的使用寿命是非常重要的。采用有限元分析方法研究了动脉变细和支架材料对支架疲劳寿命的影响。建立了球囊-支架-斑块-血管耦合系统,模拟支架在体内的工作环境。建立了5种不同的锥形血管模型,研究了血管锥形程度对支架疲劳寿命的影响。分析比较了316L不锈钢支架和L605钴铬(Co-Cr)合金支架在0.43°锥形容器中的疲劳寿命。采用Goodman图法评价支架的抗疲劳性能。结果表明,在脉动血压作用下支架支架内冠处存在应力集中现象。与支架膨胀后的应力分布相似。这也表明支架冠对支架的远期疗效起着决定性的作用。Co-Cr合金支架的最大平均应力高于316L不锈钢支架。然而,只需将支架材料从316L不锈钢改为L605钴铬合金,即可提高支架的抗疲劳性能。因此L605 Co-Cr合金支架可以承受更大的应力而不产生疲劳。此外,血管的变细也会影响支架的疲劳性能。在锥形血管中植入支架会导致较大的残余应力和较短的疲劳寿命。随着锥度的逐渐增大,支架的最小疲劳安全系数减小,表明支架更容易疲劳。与直腔相比,支架放置在1.13°锥形腔中时,其疲劳寿命缩短了9.8%。结果表明,有限元分析是预测支架疲劳寿命的有效工具。预测锥形血管支架疲劳寿命的方法可以帮助临床医生选择更适合锥形血管的支架,也可以帮助支架工程师设计更抗疲劳的支架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite Element Analysis of Fatigue Behavior of Stent in Tapered Arteries
In order to open up the blocked lumen and remodel the blood environment, vascular stents were usually used to transplant into narrowed blood vessels. Due to its minimally invasive and highly efficiency, stenting has achieved great success in the treatment of cardiovascular diseases. However, failure of stents due to its fatigue will damage the arterial wall, leading to adverse reactions such as thrombosis and in-stent restenosis (ISR), which severely limited its long-term outcome. Therefore, it was very important to predict the service life of stents, especially in tapered arteries. FEA was adopted to study the effects of arterial tapering and stent material on the fatigue life of stents. Balloon-stent-plaque-vessel coupling systems were established to simulate the working environment of stents in vivo. Five different tapered vessel models were established to study the vessel tapering level on the fatigue life of stents. Besides, the fatigue life of 316L stainless steel stent and L605 cobalt-chromium (Co-Cr) alloy stent deployed into a 0.43° tapered vessel were analyzed and compared. The Goodman diagram method was adopted to evaluate the fatigue resistance of stents. Results showed that the stress concentration was found on the inner crown of the strut when the stent was subjected to pulsating blood pressure. It was similar to the stress distribution on the stent after expansion. This also indicated that the crown of the strut played a decisive role in the long-term efficacy of the stent. The maximum average stress of Co-Cr alloy stent was higher than 316L stainless stent. However, the fatigue resistance of stents was improved by simply changing stent material from 316L stainless to L605 cobalt-chromium alloy. So the L605 Co-Cr alloy stent can withstand greater stress without fatigue. In addition, the tapering of the vessel will also affect the fatigue performance of the stent. The stent implantation in tapered vessels could lead to greater residual stress and shorter fatigue life of the stent. With the tapering level gradually increased, the minimum fatigue safety factor of the stent decreased, which indicated the stent was more likely to fatigue. Compared to a straight vessel, the fatigue life of the stent was shortened by 9.8%, when it was deployed in a 1.13° tapered vessel. The obtained results showed that finite element analysis was an effective tool to predict stent fatigue life. The method that predicted stent fatigue life in tapered vessels can help clinicians select stents that are more suitable for tapered vessels and help stent engineers design stents that are more resistant to fatigue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular & Cellular Biomechanics
Molecular & Cellular Biomechanics CELL BIOLOGYENGINEERING, BIOMEDICAL&-ENGINEERING, BIOMEDICAL
CiteScore
1.70
自引率
0.00%
发文量
21
期刊介绍: The field of biomechanics concerns with motion, deformation, and forces in biological systems. With the explosive progress in molecular biology, genomic engineering, bioimaging, and nanotechnology, there will be an ever-increasing generation of knowledge and information concerning the mechanobiology of genes, proteins, cells, tissues, and organs. Such information will bring new diagnostic tools, new therapeutic approaches, and new knowledge on ourselves and our interactions with our environment. It becomes apparent that biomechanics focusing on molecules, cells as well as tissues and organs is an important aspect of modern biomedical sciences. The aims of this journal are to facilitate the studies of the mechanics of biomolecules (including proteins, genes, cytoskeletons, etc.), cells (and their interactions with extracellular matrix), tissues and organs, the development of relevant advanced mathematical methods, and the discovery of biological secrets. As science concerns only with relative truth, we seek ideas that are state-of-the-art, which may be controversial, but stimulate and promote new ideas, new techniques, and new applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信