有限循环半群上长幂等无和序列的结构

Guoqing Wang
{"title":"有限循环半群上长幂等无和序列的结构","authors":"Guoqing Wang","doi":"10.1142/s1793042121500123","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{S}$ be a finite cyclic semigroup written additively. An element $e$ of $\\mathcal{S}$ is said to be idempotent if $e+e=e$. A sequence $T$ over $\\mathcal{S}$ is called {\\sl idempotent-sum free} provided that no idempotent of $\\mathcal{S}$ can be represented as a sum of one or more terms from $T$. We prove that an idempotent-sum free sequence over $\\mathcal{S}$ of length over approximately a half of the size of $\\mathcal{S}$ is well-structured. This result generalizes the Savchev-Chen Structure Theorem for zero-sum free sequences over finite cyclic groups.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Structure of long idempotent-sum-free sequences over finite cyclic semigroups\",\"authors\":\"Guoqing Wang\",\"doi\":\"10.1142/s1793042121500123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathcal{S}$ be a finite cyclic semigroup written additively. An element $e$ of $\\\\mathcal{S}$ is said to be idempotent if $e+e=e$. A sequence $T$ over $\\\\mathcal{S}$ is called {\\\\sl idempotent-sum free} provided that no idempotent of $\\\\mathcal{S}$ can be represented as a sum of one or more terms from $T$. We prove that an idempotent-sum free sequence over $\\\\mathcal{S}$ of length over approximately a half of the size of $\\\\mathcal{S}$ is well-structured. This result generalizes the Savchev-Chen Structure Theorem for zero-sum free sequences over finite cyclic groups.\",\"PeriodicalId\":8442,\"journal\":{\"name\":\"arXiv: Combinatorics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042121500123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793042121500123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设$\mathcal{S}$是一个可加的有限循环半群。如果$e+e=e$,则$\mathcal{S}$中的元素$e$是幂等的。一个序列$T$超过$\mathcal{S}$被称为{\sl幂等和自由},只要$\mathcal{S}$的幂等幂不能表示为$T$的一个或多个项的和。我们证明了$\mathcal{S}$上一个长度约为$\mathcal{S}$的一半的幂等和自由序列是结构良好的。这一结果推广了有限循环群上零和自由序列的savchevv - chen结构定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure of long idempotent-sum-free sequences over finite cyclic semigroups
Let $\mathcal{S}$ be a finite cyclic semigroup written additively. An element $e$ of $\mathcal{S}$ is said to be idempotent if $e+e=e$. A sequence $T$ over $\mathcal{S}$ is called {\sl idempotent-sum free} provided that no idempotent of $\mathcal{S}$ can be represented as a sum of one or more terms from $T$. We prove that an idempotent-sum free sequence over $\mathcal{S}$ of length over approximately a half of the size of $\mathcal{S}$ is well-structured. This result generalizes the Savchev-Chen Structure Theorem for zero-sum free sequences over finite cyclic groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信