{"title":"有限循环半群上长幂等无和序列的结构","authors":"Guoqing Wang","doi":"10.1142/s1793042121500123","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{S}$ be a finite cyclic semigroup written additively. An element $e$ of $\\mathcal{S}$ is said to be idempotent if $e+e=e$. A sequence $T$ over $\\mathcal{S}$ is called {\\sl idempotent-sum free} provided that no idempotent of $\\mathcal{S}$ can be represented as a sum of one or more terms from $T$. We prove that an idempotent-sum free sequence over $\\mathcal{S}$ of length over approximately a half of the size of $\\mathcal{S}$ is well-structured. This result generalizes the Savchev-Chen Structure Theorem for zero-sum free sequences over finite cyclic groups.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Structure of long idempotent-sum-free sequences over finite cyclic semigroups\",\"authors\":\"Guoqing Wang\",\"doi\":\"10.1142/s1793042121500123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathcal{S}$ be a finite cyclic semigroup written additively. An element $e$ of $\\\\mathcal{S}$ is said to be idempotent if $e+e=e$. A sequence $T$ over $\\\\mathcal{S}$ is called {\\\\sl idempotent-sum free} provided that no idempotent of $\\\\mathcal{S}$ can be represented as a sum of one or more terms from $T$. We prove that an idempotent-sum free sequence over $\\\\mathcal{S}$ of length over approximately a half of the size of $\\\\mathcal{S}$ is well-structured. This result generalizes the Savchev-Chen Structure Theorem for zero-sum free sequences over finite cyclic groups.\",\"PeriodicalId\":8442,\"journal\":{\"name\":\"arXiv: Combinatorics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042121500123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793042121500123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structure of long idempotent-sum-free sequences over finite cyclic semigroups
Let $\mathcal{S}$ be a finite cyclic semigroup written additively. An element $e$ of $\mathcal{S}$ is said to be idempotent if $e+e=e$. A sequence $T$ over $\mathcal{S}$ is called {\sl idempotent-sum free} provided that no idempotent of $\mathcal{S}$ can be represented as a sum of one or more terms from $T$. We prove that an idempotent-sum free sequence over $\mathcal{S}$ of length over approximately a half of the size of $\mathcal{S}$ is well-structured. This result generalizes the Savchev-Chen Structure Theorem for zero-sum free sequences over finite cyclic groups.