{"title":"B23:儿童急性淋巴细胞白血病(Acute Lymphoblastic Leukemia, ALL)易感检测","authors":"C. Tebbi","doi":"10.1158/1538-7755.CARISK16-B23","DOIUrl":null,"url":null,"abstract":"Currently, there are no known methods to predict of susceptibility to, and means for prevent Acute Lymphoblastic Leukemia (ALL). We have evaluated and patented a group of proteins dubbed Protein X from a certain strain of Aspergillus Flavus (AF) and developed methods for screening and identifying totally asymptomatic patients in remission of ALL, including long term survivors of this disease, distinguishing them from normal controls. Subject to institutional approved consents/assents, 15-20 ml of blood was obtained from 40 cases of ALL in children and young adults, including long term survivors of ALL. Controls were normal individuals, sickle cell patients undergoing partial exchange transfusion and patients with solid tumors. Mononuclear leukocytes (MNL) of ALL patients in remission and controls were separated using Ficoll Paque Plus (GE Healthcare). Epstein Barr virus (EBV) was obtained commercially. Positive and negative controls for Protein X were aflatoxin and Mycocladus Corymbifera (MC). Avian leukosis virus (ALV) was used as control for EBV. MNL were co-incubated with Protein X ± EBV ± irradiation, for periods of 1-72 hours. Controls were treated identically with appropriate substitutions. Test and control MNLs were examined for genetic markers, NF-κB and cell surface markers (CSM) including CD10/CD19, CD34/CD19, and CD34/CD117. Changes were expressed as percentage of control. Using ELISA, plasmas were tested for antibodies against Protein X ± EBV time experiments reveled 72 hours was optimum for achieving results. Upon 72 hours exposure of MNL from ALL to Protein X ± EBV, cells from ALL patents in remission developed cell surface phenotypes typical of ALL. This was not seen in controls. Addition of EBV ± radiation to Protein X, enhanced these effects in MNL of ALL and not controls. Changes were statistically significant and clearly separated ALL from controls. Evaluation of NF-κB revealed enhancement in ALL and not controls. Aflatoxin indiscriminately induced cell surface marker changes in both, normal and ALL, while ALV and supernatant of MC had no effect. ELISA, using Protein X ± EBV, distinguished ALL from controls. Gene array and biomarkers confirmed transformation to leukemic cell markers upon exposure to Protein X in cells from ALL patients but not controls. These studies reveal, in vitro, upon exposure to Protein X, unlike normal controls, MNL from ALL patients in remission develop cell surface phenotypes and genetic markers typical of ALL. These techniques have potential for screening for ALL and may have implications for etiology of ALL and its prevention. Citation Format: Cameron K. Tebbi. Detection of susceptibility to childhood Acute Lymphoblastic Leukemia (ALL). [abstract]. In: Proceedings of the AACR Special Conference: Improving Cancer Risk Prediction for Prevention and Early Detection; Nov 16-19, 2016; Orlando, FL. Philadelphia (PA): AACR; Cancer Epidemiol Biomarkers Prev 2017;26(5 Suppl):Abstract nr B23.","PeriodicalId":9487,"journal":{"name":"Cancer Epidemiology and Prevention Biomarkers","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abstract B23: Detection of susceptibility to childhood Acute Lymphoblastic Leukemia (ALL)\",\"authors\":\"C. Tebbi\",\"doi\":\"10.1158/1538-7755.CARISK16-B23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, there are no known methods to predict of susceptibility to, and means for prevent Acute Lymphoblastic Leukemia (ALL). We have evaluated and patented a group of proteins dubbed Protein X from a certain strain of Aspergillus Flavus (AF) and developed methods for screening and identifying totally asymptomatic patients in remission of ALL, including long term survivors of this disease, distinguishing them from normal controls. Subject to institutional approved consents/assents, 15-20 ml of blood was obtained from 40 cases of ALL in children and young adults, including long term survivors of ALL. Controls were normal individuals, sickle cell patients undergoing partial exchange transfusion and patients with solid tumors. Mononuclear leukocytes (MNL) of ALL patients in remission and controls were separated using Ficoll Paque Plus (GE Healthcare). Epstein Barr virus (EBV) was obtained commercially. Positive and negative controls for Protein X were aflatoxin and Mycocladus Corymbifera (MC). Avian leukosis virus (ALV) was used as control for EBV. MNL were co-incubated with Protein X ± EBV ± irradiation, for periods of 1-72 hours. Controls were treated identically with appropriate substitutions. Test and control MNLs were examined for genetic markers, NF-κB and cell surface markers (CSM) including CD10/CD19, CD34/CD19, and CD34/CD117. Changes were expressed as percentage of control. Using ELISA, plasmas were tested for antibodies against Protein X ± EBV time experiments reveled 72 hours was optimum for achieving results. Upon 72 hours exposure of MNL from ALL to Protein X ± EBV, cells from ALL patents in remission developed cell surface phenotypes typical of ALL. This was not seen in controls. Addition of EBV ± radiation to Protein X, enhanced these effects in MNL of ALL and not controls. Changes were statistically significant and clearly separated ALL from controls. Evaluation of NF-κB revealed enhancement in ALL and not controls. Aflatoxin indiscriminately induced cell surface marker changes in both, normal and ALL, while ALV and supernatant of MC had no effect. ELISA, using Protein X ± EBV, distinguished ALL from controls. Gene array and biomarkers confirmed transformation to leukemic cell markers upon exposure to Protein X in cells from ALL patients but not controls. These studies reveal, in vitro, upon exposure to Protein X, unlike normal controls, MNL from ALL patients in remission develop cell surface phenotypes and genetic markers typical of ALL. These techniques have potential for screening for ALL and may have implications for etiology of ALL and its prevention. Citation Format: Cameron K. Tebbi. Detection of susceptibility to childhood Acute Lymphoblastic Leukemia (ALL). [abstract]. In: Proceedings of the AACR Special Conference: Improving Cancer Risk Prediction for Prevention and Early Detection; Nov 16-19, 2016; Orlando, FL. Philadelphia (PA): AACR; Cancer Epidemiol Biomarkers Prev 2017;26(5 Suppl):Abstract nr B23.\",\"PeriodicalId\":9487,\"journal\":{\"name\":\"Cancer Epidemiology and Prevention Biomarkers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Epidemiology and Prevention Biomarkers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1158/1538-7755.CARISK16-B23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Epidemiology and Prevention Biomarkers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/1538-7755.CARISK16-B23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
目前,还没有已知的方法来预测急性淋巴细胞白血病(ALL)的易感性和预防手段。我们已经评估了一组来自黄曲霉(Aspergillus Flavus, AF)菌株的蛋白质,并获得了蛋白质X的专利,并开发了筛查和识别ALL缓解期完全无症状患者的方法,包括这种疾病的长期幸存者,将他们与正常对照区分开。根据机构批准的同意/同意,从40例ALL儿童和年轻人(包括ALL的长期幸存者)中获得15-20 ml血液。对照组为正常人、接受部分交换输血的镰状细胞患者和实体瘤患者。使用Ficoll Paque Plus (GE Healthcare)对缓解期和对照组的ALL患者的单核白细胞(MNL)进行分离。eb病毒(EBV)是商业获得的。蛋白X的阳性对照和阴性对照分别为黄曲霉毒素和Corymbifera (MC)。以禽白血病病毒(ALV)为对照。MNL与蛋白X±EBV±辐照共孵育1-72小时。对照组同样处理,采用适当替代。检测实验组和对照组mnl的遗传标记、NF-κB和细胞表面标记(CSM),包括CD10/CD19、CD34/CD19和CD34/CD117。变化以控制的百分比表示。采用ELISA法检测血浆中蛋白X±EBV抗体,实验时间为72小时。将来自ALL的MNL暴露于蛋白X±EBV 72小时后,来自缓解期ALL患者的细胞出现了ALL典型的细胞表面表型。这在对照组中没有发现。在ALL的MNL中加入EBV±辐射,增强了这些作用,而对照组没有。这些变化在统计学上是显著的,并且明显将ALL与对照区分开。对NF-κB的评估显示,ALL患者的NF-κB水平升高,而对照组则没有。黄曲霉毒素不加选择地诱导正常细胞和ALL细胞表面标志物的改变,而ALV和MC细胞上清对细胞表面标志物无影响。ELISA用蛋白X±EBV将ALL与对照区分开。基因阵列和生物标志物证实,ALL患者的细胞暴露于蛋白X后转化为白血病细胞标志物,而对照组没有。这些研究表明,在体外暴露于蛋白X后,与正常对照不同,来自缓解期ALL患者的MNL出现了ALL典型的细胞表面表型和遗传标记。这些技术具有筛查ALL的潜力,并可能对ALL的病因和预防产生影响。引文格式:Cameron K. Tebbi。儿童急性淋巴细胞白血病(ALL)易感性的检测。[摘要]。摘自:AACR特别会议论文集:改进癌症风险预测以预防和早期发现;2016年11月16日至19日;费城(PA): AACR;Cancer epidemiology Biomarkers pre2017;26(5增刊):摘要nr B23。
Abstract B23: Detection of susceptibility to childhood Acute Lymphoblastic Leukemia (ALL)
Currently, there are no known methods to predict of susceptibility to, and means for prevent Acute Lymphoblastic Leukemia (ALL). We have evaluated and patented a group of proteins dubbed Protein X from a certain strain of Aspergillus Flavus (AF) and developed methods for screening and identifying totally asymptomatic patients in remission of ALL, including long term survivors of this disease, distinguishing them from normal controls. Subject to institutional approved consents/assents, 15-20 ml of blood was obtained from 40 cases of ALL in children and young adults, including long term survivors of ALL. Controls were normal individuals, sickle cell patients undergoing partial exchange transfusion and patients with solid tumors. Mononuclear leukocytes (MNL) of ALL patients in remission and controls were separated using Ficoll Paque Plus (GE Healthcare). Epstein Barr virus (EBV) was obtained commercially. Positive and negative controls for Protein X were aflatoxin and Mycocladus Corymbifera (MC). Avian leukosis virus (ALV) was used as control for EBV. MNL were co-incubated with Protein X ± EBV ± irradiation, for periods of 1-72 hours. Controls were treated identically with appropriate substitutions. Test and control MNLs were examined for genetic markers, NF-κB and cell surface markers (CSM) including CD10/CD19, CD34/CD19, and CD34/CD117. Changes were expressed as percentage of control. Using ELISA, plasmas were tested for antibodies against Protein X ± EBV time experiments reveled 72 hours was optimum for achieving results. Upon 72 hours exposure of MNL from ALL to Protein X ± EBV, cells from ALL patents in remission developed cell surface phenotypes typical of ALL. This was not seen in controls. Addition of EBV ± radiation to Protein X, enhanced these effects in MNL of ALL and not controls. Changes were statistically significant and clearly separated ALL from controls. Evaluation of NF-κB revealed enhancement in ALL and not controls. Aflatoxin indiscriminately induced cell surface marker changes in both, normal and ALL, while ALV and supernatant of MC had no effect. ELISA, using Protein X ± EBV, distinguished ALL from controls. Gene array and biomarkers confirmed transformation to leukemic cell markers upon exposure to Protein X in cells from ALL patients but not controls. These studies reveal, in vitro, upon exposure to Protein X, unlike normal controls, MNL from ALL patients in remission develop cell surface phenotypes and genetic markers typical of ALL. These techniques have potential for screening for ALL and may have implications for etiology of ALL and its prevention. Citation Format: Cameron K. Tebbi. Detection of susceptibility to childhood Acute Lymphoblastic Leukemia (ALL). [abstract]. In: Proceedings of the AACR Special Conference: Improving Cancer Risk Prediction for Prevention and Early Detection; Nov 16-19, 2016; Orlando, FL. Philadelphia (PA): AACR; Cancer Epidemiol Biomarkers Prev 2017;26(5 Suppl):Abstract nr B23.