基于深度学习的扫描电镜图像线粗糙度估计和泊松去噪

IF 1.5 2区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
N. Chaudhary, S. Savari, S. S. Yeddulapalli
{"title":"基于深度学习的扫描电镜图像线粗糙度估计和泊松去噪","authors":"N. Chaudhary, S. Savari, S. S. Yeddulapalli","doi":"10.1117/1.JMM.18.2.024001","DOIUrl":null,"url":null,"abstract":"Abstract. We propose the use of deep supervised learning for the estimation of line edge roughness (LER) and line width roughness (LWR) in low-dose scanning electron microscope (SEM) images. We simulate a supervised learning dataset of 100,800 SEM rough line images constructed by means of the Thorsos method and the ARTIMAGEN library developed by the National Institute of Standards and Technology. We also devise two separate deep convolutional neural networks called SEMNet and EDGENet, each of which has 17 convolutional layers, 16 batch normalization layers, and 16 dropout layers. SEMNet performs the Poisson denoising of SEM images, and it is trained with a dataset of simulated noisy-original SEM image pairs. EDGENet directly estimates the edge geometries from noisy SEM images, and it is trained with a dataset of simulated noisy SEM image-edge array pairs. SEMNet achieved considerable improvements in peak signal-to-noise ratio as well as the best LER/LWR estimation accuracy compared with standard image denoisers. EDGENet offers excellent LER and LWR estimation as well as roughness spectrum estimation.","PeriodicalId":16522,"journal":{"name":"Journal of Micro/Nanolithography, MEMS, and MOEMS","volume":"344 1","pages":"024001 - 024001"},"PeriodicalIF":1.5000,"publicationDate":"2019-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Line roughness estimation and Poisson denoising in scanning electron microscope images using deep learning\",\"authors\":\"N. Chaudhary, S. Savari, S. S. Yeddulapalli\",\"doi\":\"10.1117/1.JMM.18.2.024001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We propose the use of deep supervised learning for the estimation of line edge roughness (LER) and line width roughness (LWR) in low-dose scanning electron microscope (SEM) images. We simulate a supervised learning dataset of 100,800 SEM rough line images constructed by means of the Thorsos method and the ARTIMAGEN library developed by the National Institute of Standards and Technology. We also devise two separate deep convolutional neural networks called SEMNet and EDGENet, each of which has 17 convolutional layers, 16 batch normalization layers, and 16 dropout layers. SEMNet performs the Poisson denoising of SEM images, and it is trained with a dataset of simulated noisy-original SEM image pairs. EDGENet directly estimates the edge geometries from noisy SEM images, and it is trained with a dataset of simulated noisy SEM image-edge array pairs. SEMNet achieved considerable improvements in peak signal-to-noise ratio as well as the best LER/LWR estimation accuracy compared with standard image denoisers. EDGENet offers excellent LER and LWR estimation as well as roughness spectrum estimation.\",\"PeriodicalId\":16522,\"journal\":{\"name\":\"Journal of Micro/Nanolithography, MEMS, and MOEMS\",\"volume\":\"344 1\",\"pages\":\"024001 - 024001\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2019-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micro/Nanolithography, MEMS, and MOEMS\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JMM.18.2.024001\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro/Nanolithography, MEMS, and MOEMS","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JMM.18.2.024001","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 27

摘要

摘要我们提出使用深度监督学习来估计低剂量扫描电子显微镜(SEM)图像中的线边缘粗糙度(LER)和线宽度粗糙度(LWR)。我们利用Thorsos方法和美国国家标准与技术研究院开发的ARTIMAGEN库构建了一个包含100,800张SEM粗线图像的监督学习数据集。我们还设计了两个独立的深度卷积神经网络,称为SEMNet和EDGENet,每个网络都有17个卷积层,16个批处理归一化层和16个dropout层。SEMNet对SEM图像进行泊松去噪,并使用模拟的原始噪声SEM图像对数据集进行训练。EDGENet直接从有噪声的扫描电镜图像中估计边缘几何形状,并使用模拟的有噪声扫描电镜图像边缘阵列对数据集进行训练。与标准图像去噪器相比,SEMNet在峰值信噪比以及LER/LWR估计精度方面取得了相当大的改进。EDGENet提供了出色的LER和LWR估计以及粗糙度谱估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Line roughness estimation and Poisson denoising in scanning electron microscope images using deep learning
Abstract. We propose the use of deep supervised learning for the estimation of line edge roughness (LER) and line width roughness (LWR) in low-dose scanning electron microscope (SEM) images. We simulate a supervised learning dataset of 100,800 SEM rough line images constructed by means of the Thorsos method and the ARTIMAGEN library developed by the National Institute of Standards and Technology. We also devise two separate deep convolutional neural networks called SEMNet and EDGENet, each of which has 17 convolutional layers, 16 batch normalization layers, and 16 dropout layers. SEMNet performs the Poisson denoising of SEM images, and it is trained with a dataset of simulated noisy-original SEM image pairs. EDGENet directly estimates the edge geometries from noisy SEM images, and it is trained with a dataset of simulated noisy SEM image-edge array pairs. SEMNet achieved considerable improvements in peak signal-to-noise ratio as well as the best LER/LWR estimation accuracy compared with standard image denoisers. EDGENet offers excellent LER and LWR estimation as well as roughness spectrum estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
30.40%
发文量
0
审稿时长
6-12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信