{"title":"用于防御DoS,间谍软件,恶意软件,病毒和钓鱼的仿生自主神经系统","authors":"Yuan-Shun Dai, Yanping Xiang, Yi Pan","doi":"10.1145/2567924","DOIUrl":null,"url":null,"abstract":"Computing systems and networks become increasingly large and complex with a variety of compromises and vulnerabilities. The network security and privacy are of great concern today, where self-defense against different kinds of attacks in an autonomous and holistic manner is a challenging topic. To address this problem, we developed an innovative technology called Bionic Autonomic Nervous System (BANS). The BANS is analogous to biological nervous system, which consists of basic modules like cyber axon, cyber neuron, peripheral nerve and central nerve. We also presented an innovative self-defense mechanism which utilizes the Fuzzy Logic, Neural Networks, and Entropy Awareness, etc. Equipped with the BANS, computer and network systems can intelligently self-defend against both known and unknown compromises/attacks including denial of services (DoS), spyware, malware, and virus. BANS also enabled multiple computers to collaboratively fight against some distributed intelligent attacks like DDoS. We have implemented the BANS in practice. Some case studies and experimental results exhibited the effectiveness and efficiency of the BANS and the self-defense mechanism.","PeriodicalId":50919,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems","volume":"28 1","pages":"4:1-4:20"},"PeriodicalIF":2.2000,"publicationDate":"2014-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Bionic Autonomic Nervous Systems for Self-Defense against DoS, Spyware, Malware, Virus, and Fishing\",\"authors\":\"Yuan-Shun Dai, Yanping Xiang, Yi Pan\",\"doi\":\"10.1145/2567924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computing systems and networks become increasingly large and complex with a variety of compromises and vulnerabilities. The network security and privacy are of great concern today, where self-defense against different kinds of attacks in an autonomous and holistic manner is a challenging topic. To address this problem, we developed an innovative technology called Bionic Autonomic Nervous System (BANS). The BANS is analogous to biological nervous system, which consists of basic modules like cyber axon, cyber neuron, peripheral nerve and central nerve. We also presented an innovative self-defense mechanism which utilizes the Fuzzy Logic, Neural Networks, and Entropy Awareness, etc. Equipped with the BANS, computer and network systems can intelligently self-defend against both known and unknown compromises/attacks including denial of services (DoS), spyware, malware, and virus. BANS also enabled multiple computers to collaboratively fight against some distributed intelligent attacks like DDoS. We have implemented the BANS in practice. Some case studies and experimental results exhibited the effectiveness and efficiency of the BANS and the self-defense mechanism.\",\"PeriodicalId\":50919,\"journal\":{\"name\":\"ACM Transactions on Autonomous and Adaptive Systems\",\"volume\":\"28 1\",\"pages\":\"4:1-4:20\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2014-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Autonomous and Adaptive Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/2567924\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/2567924","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Bionic Autonomic Nervous Systems for Self-Defense against DoS, Spyware, Malware, Virus, and Fishing
Computing systems and networks become increasingly large and complex with a variety of compromises and vulnerabilities. The network security and privacy are of great concern today, where self-defense against different kinds of attacks in an autonomous and holistic manner is a challenging topic. To address this problem, we developed an innovative technology called Bionic Autonomic Nervous System (BANS). The BANS is analogous to biological nervous system, which consists of basic modules like cyber axon, cyber neuron, peripheral nerve and central nerve. We also presented an innovative self-defense mechanism which utilizes the Fuzzy Logic, Neural Networks, and Entropy Awareness, etc. Equipped with the BANS, computer and network systems can intelligently self-defend against both known and unknown compromises/attacks including denial of services (DoS), spyware, malware, and virus. BANS also enabled multiple computers to collaboratively fight against some distributed intelligent attacks like DDoS. We have implemented the BANS in practice. Some case studies and experimental results exhibited the effectiveness and efficiency of the BANS and the self-defense mechanism.
期刊介绍:
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community -- and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors.
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community - and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors. Contributions are expected to be based on sound and innovative theoretical models, algorithms, engineering and programming techniques, infrastructures and systems, or technological and application experiences.