{"title":"微分形式和0维超对称场论","authors":"Henning Hohnhold, M. Kreck, S. Stolz, P. Teichner","doi":"10.4171/QT/12","DOIUrl":null,"url":null,"abstract":"We show that closed differential forms on a smooth manifold X can be interpreted astopological(respectivelyEudlidean)supersymmetricfieldtheoriesofdimension0j1overX. As a consequence, concordance classes of such field theories are shown to represent de Rham cohomology. The main contribution of this paper is to make all new mathematical notions regarding supersymmetric field theories precise.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"12 1","pages":"1-41"},"PeriodicalIF":1.0000,"publicationDate":"2011-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Differential forms and 0-dimensional supersymmetric field theories\",\"authors\":\"Henning Hohnhold, M. Kreck, S. Stolz, P. Teichner\",\"doi\":\"10.4171/QT/12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that closed differential forms on a smooth manifold X can be interpreted astopological(respectivelyEudlidean)supersymmetricfieldtheoriesofdimension0j1overX. As a consequence, concordance classes of such field theories are shown to represent de Rham cohomology. The main contribution of this paper is to make all new mathematical notions regarding supersymmetric field theories precise.\",\"PeriodicalId\":51331,\"journal\":{\"name\":\"Quantum Topology\",\"volume\":\"12 1\",\"pages\":\"1-41\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2011-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/QT/12\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/QT/12","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Differential forms and 0-dimensional supersymmetric field theories
We show that closed differential forms on a smooth manifold X can be interpreted astopological(respectivelyEudlidean)supersymmetricfieldtheoriesofdimension0j1overX. As a consequence, concordance classes of such field theories are shown to represent de Rham cohomology. The main contribution of this paper is to make all new mathematical notions regarding supersymmetric field theories precise.
期刊介绍:
Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular:
Low-dimensional Topology
Knot Theory
Jones Polynomial and Khovanov Homology
Topological Quantum Field Theory
Quantum Groups and Hopf Algebras
Mapping Class Groups and Teichmüller space
Categorification
Braid Groups and Braided Categories
Fusion Categories
Subfactors and Planar Algebras
Contact and Symplectic Topology
Topological Methods in Physics.