微分形式和0维超对称场论

IF 1 2区 数学 Q1 MATHEMATICS
Quantum Topology Pub Date : 2011-01-16 DOI:10.4171/QT/12
Henning Hohnhold, M. Kreck, S. Stolz, P. Teichner
{"title":"微分形式和0维超对称场论","authors":"Henning Hohnhold, M. Kreck, S. Stolz, P. Teichner","doi":"10.4171/QT/12","DOIUrl":null,"url":null,"abstract":"We show that closed differential forms on a smooth manifold X can be interpreted astopological(respectivelyEudlidean)supersymmetricfieldtheoriesofdimension0j1overX. As a consequence, concordance classes of such field theories are shown to represent de Rham cohomology. The main contribution of this paper is to make all new mathematical notions regarding supersymmetric field theories precise.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"12 1","pages":"1-41"},"PeriodicalIF":1.0000,"publicationDate":"2011-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Differential forms and 0-dimensional supersymmetric field theories\",\"authors\":\"Henning Hohnhold, M. Kreck, S. Stolz, P. Teichner\",\"doi\":\"10.4171/QT/12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that closed differential forms on a smooth manifold X can be interpreted astopological(respectivelyEudlidean)supersymmetricfieldtheoriesofdimension0j1overX. As a consequence, concordance classes of such field theories are shown to represent de Rham cohomology. The main contribution of this paper is to make all new mathematical notions regarding supersymmetric field theories precise.\",\"PeriodicalId\":51331,\"journal\":{\"name\":\"Quantum Topology\",\"volume\":\"12 1\",\"pages\":\"1-41\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2011-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/QT/12\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/QT/12","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 33

摘要

我们证明了在光滑流形X上的闭微分形式可以用维数为0 - 1 / X的超对称场论来解释。因此,这些场论的一致性类被证明代表了德拉姆上同。本文的主要贡献是使所有关于超对称场论的新数学概念变得精确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential forms and 0-dimensional supersymmetric field theories
We show that closed differential forms on a smooth manifold X can be interpreted astopological(respectivelyEudlidean)supersymmetricfieldtheoriesofdimension0j1overX. As a consequence, concordance classes of such field theories are shown to represent de Rham cohomology. The main contribution of this paper is to make all new mathematical notions regarding supersymmetric field theories precise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Topology
Quantum Topology Mathematics-Geometry and Topology
CiteScore
1.80
自引率
9.10%
发文量
8
期刊介绍: Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular: Low-dimensional Topology Knot Theory Jones Polynomial and Khovanov Homology Topological Quantum Field Theory Quantum Groups and Hopf Algebras Mapping Class Groups and Teichmüller space Categorification Braid Groups and Braided Categories Fusion Categories Subfactors and Planar Algebras Contact and Symplectic Topology Topological Methods in Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信