用硫酸和草酸合成阳极氧化铝及其表征

IF 0.4 Q4 NANOSCIENCE & NANOTECHNOLOGY
Nur Afieqah Md Ghazazi, Syahida Suhaimi, M. Z. Othman
{"title":"用硫酸和草酸合成阳极氧化铝及其表征","authors":"Nur Afieqah Md Ghazazi, Syahida Suhaimi, M. Z. Othman","doi":"10.4028/www.scientific.net/NHC.31.35","DOIUrl":null,"url":null,"abstract":"Anodic Alumina Oxide (AAO) is one of the nanomaterials that have developed as a template in the nanowires, nanodots and nanotubes. This research focuses on synthesizing AAO by two different electrolytic solutions which are using sulfuric acid (H2SO4) and oxalic acid (C2H2O4) by electrochemical anodization method. Two parameters were influencing the anodization process in the experiment; the type and the concentration of the electrolytic solution. The effects of the different type of electrolytic solutions produced different size of pores. When the voltage used is 25 V in H2SO4, the optimum reading size of the nanopores is in the range of 16-22 nm, whereas the AAO pores in C2H2O4 are in the range of 100-200 nm. Meanwhile, the concentration of H2SO4 and C2H2O4 is set to be 0.3 M, 0.4 M and 0.5 M., The results in 0.3 M H2SO4 and C2H2O4, show the optimum concentration of electrolytic solutions which is the key parameter affecting the morphological structure of porous membranes in AAO. The optimum value for these two acidic solutions has produced such highly ordered arrangement of nanopores which are from the average size of nanopores that anodized in sulfuric acid is 19 nm while 120 nm in oxalic acid. The morphological structure properties of AAO templates include the diameter of nanopores, the thickness of membrane and density of nanopores would be examined by Field Emission Scanning Electron Microscope (FESEM) and Energy Dispersive X-ray (EDX). Also, Fourier-transmittance infrared spectroscopy (FTIR) detected the chemical functional group of bonds in AAO. In conclusion, AAO templates have a big potential to be the major contributor in the future for the development of new electronic devices.","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"12 1","pages":"35 - 44"},"PeriodicalIF":0.4000,"publicationDate":"2021-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Synthesis and Characterization of Anodic Alumina Oxide Using Sulfuric Acid and Oxalic Acid\",\"authors\":\"Nur Afieqah Md Ghazazi, Syahida Suhaimi, M. Z. Othman\",\"doi\":\"10.4028/www.scientific.net/NHC.31.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anodic Alumina Oxide (AAO) is one of the nanomaterials that have developed as a template in the nanowires, nanodots and nanotubes. This research focuses on synthesizing AAO by two different electrolytic solutions which are using sulfuric acid (H2SO4) and oxalic acid (C2H2O4) by electrochemical anodization method. Two parameters were influencing the anodization process in the experiment; the type and the concentration of the electrolytic solution. The effects of the different type of electrolytic solutions produced different size of pores. When the voltage used is 25 V in H2SO4, the optimum reading size of the nanopores is in the range of 16-22 nm, whereas the AAO pores in C2H2O4 are in the range of 100-200 nm. Meanwhile, the concentration of H2SO4 and C2H2O4 is set to be 0.3 M, 0.4 M and 0.5 M., The results in 0.3 M H2SO4 and C2H2O4, show the optimum concentration of electrolytic solutions which is the key parameter affecting the morphological structure of porous membranes in AAO. The optimum value for these two acidic solutions has produced such highly ordered arrangement of nanopores which are from the average size of nanopores that anodized in sulfuric acid is 19 nm while 120 nm in oxalic acid. The morphological structure properties of AAO templates include the diameter of nanopores, the thickness of membrane and density of nanopores would be examined by Field Emission Scanning Electron Microscope (FESEM) and Energy Dispersive X-ray (EDX). Also, Fourier-transmittance infrared spectroscopy (FTIR) detected the chemical functional group of bonds in AAO. In conclusion, AAO templates have a big potential to be the major contributor in the future for the development of new electronic devices.\",\"PeriodicalId\":18861,\"journal\":{\"name\":\"Nano Hybrids and Composites\",\"volume\":\"12 1\",\"pages\":\"35 - 44\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Hybrids and Composites\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/www.scientific.net/NHC.31.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Hybrids and Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/NHC.31.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

阳极氧化氧化铝(AAO)是目前在纳米线、纳米点和纳米管中作为模板材料发展起来的纳米材料之一。本研究以硫酸(H2SO4)和草酸(C2H2O4)为电解溶液,采用电化学阳极氧化法合成AAO。实验中有两个参数影响阳极氧化过程;电解溶液的种类和浓度。不同类型的电解溶液的作用产生了不同大小的孔隙。在H2SO4中,当电压为25 V时,纳米孔的最佳读取尺寸为16 ~ 22 nm,而在c2h22o4中,AAO孔的最佳读取尺寸为100 ~ 200 nm。同时,将H2SO4和C2H2O4的浓度分别设置为0.3 M、0.4 M和0.5 M,结果表明,在0.3 M时,电解溶液的最佳浓度是影响AAO多孔膜形态结构的关键参数。这两种酸性溶液的最佳值产生了高度有序排列的纳米孔,这是由于在硫酸中阳极氧化的纳米孔平均尺寸为19 nm,而在草酸中阳极氧化的纳米孔平均尺寸为120 nm。利用场发射扫描电镜(FESEM)和能量色散x射线(EDX)检测了AAO模板的纳米孔直径、膜厚度和纳米孔密度。傅里叶透射红外光谱(FTIR)检测了AAO中化学键的官能团。综上所述,AAO模板有很大的潜力成为未来新型电子器件开发的主要贡献者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Synthesis and Characterization of Anodic Alumina Oxide Using Sulfuric Acid and Oxalic Acid
Anodic Alumina Oxide (AAO) is one of the nanomaterials that have developed as a template in the nanowires, nanodots and nanotubes. This research focuses on synthesizing AAO by two different electrolytic solutions which are using sulfuric acid (H2SO4) and oxalic acid (C2H2O4) by electrochemical anodization method. Two parameters were influencing the anodization process in the experiment; the type and the concentration of the electrolytic solution. The effects of the different type of electrolytic solutions produced different size of pores. When the voltage used is 25 V in H2SO4, the optimum reading size of the nanopores is in the range of 16-22 nm, whereas the AAO pores in C2H2O4 are in the range of 100-200 nm. Meanwhile, the concentration of H2SO4 and C2H2O4 is set to be 0.3 M, 0.4 M and 0.5 M., The results in 0.3 M H2SO4 and C2H2O4, show the optimum concentration of electrolytic solutions which is the key parameter affecting the morphological structure of porous membranes in AAO. The optimum value for these two acidic solutions has produced such highly ordered arrangement of nanopores which are from the average size of nanopores that anodized in sulfuric acid is 19 nm while 120 nm in oxalic acid. The morphological structure properties of AAO templates include the diameter of nanopores, the thickness of membrane and density of nanopores would be examined by Field Emission Scanning Electron Microscope (FESEM) and Energy Dispersive X-ray (EDX). Also, Fourier-transmittance infrared spectroscopy (FTIR) detected the chemical functional group of bonds in AAO. In conclusion, AAO templates have a big potential to be the major contributor in the future for the development of new electronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Hybrids and Composites
Nano Hybrids and Composites NANOSCIENCE & NANOTECHNOLOGY-
自引率
0.00%
发文量
47
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信