Gabriel Israel Vásquez Hernández, Marco Aurelio González Albarrán, Eduardo Rodríguez de Anda, José de Jesús Ibarra Montalvo, J. C. Díaz Guillén, Jorge Manuel Chávez Aguilar
{"title":"掺入碳化硅微纤维及其对 NiCoCrAlY-7YSZ 隔热涂层界面附着力影响的研究","authors":"Gabriel Israel Vásquez Hernández, Marco Aurelio González Albarrán, Eduardo Rodríguez de Anda, José de Jesús Ibarra Montalvo, J. C. Díaz Guillén, Jorge Manuel Chávez Aguilar","doi":"10.1007/s11085-023-10177-z","DOIUrl":null,"url":null,"abstract":"<div><p>The present work studied the effect of the addition of SiC microfibers and their influence on interfacial adherence of NiCoCrAlY-7YSZ thermal barrier coatings (TBCs) systems. Two different coatings were fabricated (with and without the addition of SiC microfibers) and exposed to isothermal oxidation heat treatments (OHT) at 950 °C from 50 to 200 h. The microstructure and pull-off test evaluations showed that coatings reinforced with SiC possess a thinner thermally grown oxide (TGO) layer, suggesting an improvement in the oxidation resistance of these samples. In this sense, the coating with SiC also displayed better adherence resistance after 50 and 200 h of exposure. On the other hand, after the pull-off tests, reinforced samples showed a lower percentage of fracture. The above indicates that SiC microfibers enhance the interfacial adherence between the TGO and the ceramic layer (TC) by forming complex oxides resulting from the self-healing reaction mechanism.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 1","pages":"105 - 124"},"PeriodicalIF":2.1000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the Incorporation of SiC Microfibers and Their Effect on Adherence at the Interface of a NiCoCrAlY-7YSZ Thermal Barrier Coating\",\"authors\":\"Gabriel Israel Vásquez Hernández, Marco Aurelio González Albarrán, Eduardo Rodríguez de Anda, José de Jesús Ibarra Montalvo, J. C. Díaz Guillén, Jorge Manuel Chávez Aguilar\",\"doi\":\"10.1007/s11085-023-10177-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present work studied the effect of the addition of SiC microfibers and their influence on interfacial adherence of NiCoCrAlY-7YSZ thermal barrier coatings (TBCs) systems. Two different coatings were fabricated (with and without the addition of SiC microfibers) and exposed to isothermal oxidation heat treatments (OHT) at 950 °C from 50 to 200 h. The microstructure and pull-off test evaluations showed that coatings reinforced with SiC possess a thinner thermally grown oxide (TGO) layer, suggesting an improvement in the oxidation resistance of these samples. In this sense, the coating with SiC also displayed better adherence resistance after 50 and 200 h of exposure. On the other hand, after the pull-off tests, reinforced samples showed a lower percentage of fracture. The above indicates that SiC microfibers enhance the interfacial adherence between the TGO and the ceramic layer (TC) by forming complex oxides resulting from the self-healing reaction mechanism.</p></div>\",\"PeriodicalId\":724,\"journal\":{\"name\":\"Oxidation of Metals\",\"volume\":\"101 1\",\"pages\":\"105 - 124\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxidation of Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11085-023-10177-z\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxidation of Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11085-023-10177-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Study of the Incorporation of SiC Microfibers and Their Effect on Adherence at the Interface of a NiCoCrAlY-7YSZ Thermal Barrier Coating
The present work studied the effect of the addition of SiC microfibers and their influence on interfacial adherence of NiCoCrAlY-7YSZ thermal barrier coatings (TBCs) systems. Two different coatings were fabricated (with and without the addition of SiC microfibers) and exposed to isothermal oxidation heat treatments (OHT) at 950 °C from 50 to 200 h. The microstructure and pull-off test evaluations showed that coatings reinforced with SiC possess a thinner thermally grown oxide (TGO) layer, suggesting an improvement in the oxidation resistance of these samples. In this sense, the coating with SiC also displayed better adherence resistance after 50 and 200 h of exposure. On the other hand, after the pull-off tests, reinforced samples showed a lower percentage of fracture. The above indicates that SiC microfibers enhance the interfacial adherence between the TGO and the ceramic layer (TC) by forming complex oxides resulting from the self-healing reaction mechanism.
期刊介绍:
Oxidation of Metals is the premier source for the rapid dissemination of current research on all aspects of the science of gas-solid reactions at temperatures greater than about 400˚C, with primary focus on the high-temperature corrosion of bulk and coated systems. This authoritative bi-monthly publishes original scientific papers on kinetics, mechanisms, studies of scales from structural and morphological viewpoints, transport properties in scales, phase-boundary reactions, and much more. Articles may discuss both theoretical and experimental work related to gas-solid reactions at the surface or near-surface of a material exposed to elevated temperatures, including reactions with oxygen, nitrogen, sulfur, carbon and halogens. In addition, Oxidation of Metals publishes the results of frontier research concerned with deposit-induced attack. Review papers and short technical notes are encouraged.