基于gan的神经地图风格迁移探索

IF 0.4 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
S. Christophe, Samuel Mermet, Morgan Laurent, G. Touya
{"title":"基于gan的神经地图风格迁移探索","authors":"S. Christophe, Samuel Mermet, Morgan Laurent, G. Touya","doi":"10.1080/23729333.2022.2031554","DOIUrl":null,"url":null,"abstract":"ABSTRACT Neural Style Transfer is a Computer Vision topic intending to transfer the visual appearance or the style of images to other images. Developments in deep learning nicely generate stylized images from texture-based examples or transfer the style of a photograph to another one. In map design, the style is a multi-dimensional complex problem related to recognizable visual salient features and topological arrangements, supporting the description of geographic spaces at a specific scale. The map style transfer is still at stake to generate a diversity of possible new styles to render geographical features. Generative adversarial Networks (GANs) techniques, well supporting image-to-image translation tasks, offer new perspectives for map style transfer. We propose to use accessible GAN architectures, in order to experiment and assess neural map style transfer to ortho-images, while using different map designs of various geographic spaces, from simple-styled (Plan maps) to complex-styled (old Cassini, Etat-Major, or Scan50 B&W). This transfer task and our global protocol are presented, including the sampling grid, the training and test of Pix2Pix and CycleGAN models, such as the perceptual assessment of the generated outputs. Promising results are discussed, opening research issues for neural map style transfer exploration with GANs.","PeriodicalId":36401,"journal":{"name":"International Journal of Cartography","volume":"11 1","pages":"18 - 36"},"PeriodicalIF":0.4000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Neural map style transfer exploration with GANs\",\"authors\":\"S. Christophe, Samuel Mermet, Morgan Laurent, G. Touya\",\"doi\":\"10.1080/23729333.2022.2031554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Neural Style Transfer is a Computer Vision topic intending to transfer the visual appearance or the style of images to other images. Developments in deep learning nicely generate stylized images from texture-based examples or transfer the style of a photograph to another one. In map design, the style is a multi-dimensional complex problem related to recognizable visual salient features and topological arrangements, supporting the description of geographic spaces at a specific scale. The map style transfer is still at stake to generate a diversity of possible new styles to render geographical features. Generative adversarial Networks (GANs) techniques, well supporting image-to-image translation tasks, offer new perspectives for map style transfer. We propose to use accessible GAN architectures, in order to experiment and assess neural map style transfer to ortho-images, while using different map designs of various geographic spaces, from simple-styled (Plan maps) to complex-styled (old Cassini, Etat-Major, or Scan50 B&W). This transfer task and our global protocol are presented, including the sampling grid, the training and test of Pix2Pix and CycleGAN models, such as the perceptual assessment of the generated outputs. Promising results are discussed, opening research issues for neural map style transfer exploration with GANs.\",\"PeriodicalId\":36401,\"journal\":{\"name\":\"International Journal of Cartography\",\"volume\":\"11 1\",\"pages\":\"18 - 36\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Cartography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23729333.2022.2031554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cartography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23729333.2022.2031554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 5

摘要

神经风格转移是一个计算机视觉的主题,旨在将图像的视觉外观或风格转移到其他图像。深度学习的发展很好地从基于纹理的例子中生成风格化的图像,或者将照片的风格转移到另一张照片上。在地图设计中,风格是一个多维度的复杂问题,涉及可识别的视觉显著特征和拓扑安排,支持特定比例的地理空间描述。地图风格的转换仍然是利害攸关的,以产生各种可能的新风格来呈现地理特征。生成对抗网络(GANs)技术很好地支持图像到图像的翻译任务,为地图风格迁移提供了新的视角。我们建议使用可访问的GAN架构,以实验和评估神经地图风格向正影像的转移,同时使用不同地理空间的不同地图设计,从简单风格(Plan地图)到复杂风格(旧卡西尼,Etat-Major或Scan50 B&W)。介绍了该转移任务和我们的全局协议,包括采样网格,Pix2Pix和CycleGAN模型的训练和测试,例如对生成输出的感知评估。讨论了有希望的结果,为gan的神经地图风格迁移探索开辟了研究课题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural map style transfer exploration with GANs
ABSTRACT Neural Style Transfer is a Computer Vision topic intending to transfer the visual appearance or the style of images to other images. Developments in deep learning nicely generate stylized images from texture-based examples or transfer the style of a photograph to another one. In map design, the style is a multi-dimensional complex problem related to recognizable visual salient features and topological arrangements, supporting the description of geographic spaces at a specific scale. The map style transfer is still at stake to generate a diversity of possible new styles to render geographical features. Generative adversarial Networks (GANs) techniques, well supporting image-to-image translation tasks, offer new perspectives for map style transfer. We propose to use accessible GAN architectures, in order to experiment and assess neural map style transfer to ortho-images, while using different map designs of various geographic spaces, from simple-styled (Plan maps) to complex-styled (old Cassini, Etat-Major, or Scan50 B&W). This transfer task and our global protocol are presented, including the sampling grid, the training and test of Pix2Pix and CycleGAN models, such as the perceptual assessment of the generated outputs. Promising results are discussed, opening research issues for neural map style transfer exploration with GANs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Cartography
International Journal of Cartography Social Sciences-Geography, Planning and Development
CiteScore
1.40
自引率
0.00%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信