基于陷阱动力学的三维动力学蒙特卡罗模拟用于UTBB mosfet可靠性评估

Wangyong Chen, Linlin Cai, Xiaoyan Liu, G. Du
{"title":"基于陷阱动力学的三维动力学蒙特卡罗模拟用于UTBB mosfet可靠性评估","authors":"Wangyong Chen, Linlin Cai, Xiaoyan Liu, G. Du","doi":"10.1109/SISPAD.2019.8870505","DOIUrl":null,"url":null,"abstract":"Trap dynamics based 3D Kinetic Monte Carlo (KMC) simulator is developed to offer physical insights into the electrical characteristics degradation and quantitative reliability evaluation for advanced MOSFETs. The physics-based 3D KMC simulation enables to reproduce the evolution of stress-induced charge distribution in the multi-layer dielectrics and identify the trap impact on the degradation of device performance. Simulation results of UTBB FDSOI MOSFETs reveal that assumption of the uniform charge distribution in the dielectrics induced by stress underestimates the statistical degradation and variability. It also shows that the higher intrinsic trap density of back-gate oxide leads to the larger degradation and its variability, especially for the increased back-gate bias case.","PeriodicalId":6755,"journal":{"name":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"45 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trap Dynamics based 3D Kinetic Monte Carlo Simulation for Reliability Evaluation of UTBB MOSFETs\",\"authors\":\"Wangyong Chen, Linlin Cai, Xiaoyan Liu, G. Du\",\"doi\":\"10.1109/SISPAD.2019.8870505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trap dynamics based 3D Kinetic Monte Carlo (KMC) simulator is developed to offer physical insights into the electrical characteristics degradation and quantitative reliability evaluation for advanced MOSFETs. The physics-based 3D KMC simulation enables to reproduce the evolution of stress-induced charge distribution in the multi-layer dielectrics and identify the trap impact on the degradation of device performance. Simulation results of UTBB FDSOI MOSFETs reveal that assumption of the uniform charge distribution in the dielectrics induced by stress underestimates the statistical degradation and variability. It also shows that the higher intrinsic trap density of back-gate oxide leads to the larger degradation and its variability, especially for the increased back-gate bias case.\",\"PeriodicalId\":6755,\"journal\":{\"name\":\"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"volume\":\"45 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISPAD.2019.8870505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2019.8870505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于陷阱动力学的三维动力学蒙特卡罗(KMC)模拟器的开发,为先进的mosfet的电气特性退化和定量可靠性评估提供了物理见解。基于物理的3D KMC模拟能够再现多层电介质中应力诱导电荷分布的演变,并识别陷阱对器件性能退化的影响。UTBB FDSOI mosfet的仿真结果表明,假设介质中由应力引起的电荷均匀分布低估了统计退化和变异性。研究还表明,较高的反向氧化本质阱密度导致了更大的降解及其变异性,特别是在反向偏压增加的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trap Dynamics based 3D Kinetic Monte Carlo Simulation for Reliability Evaluation of UTBB MOSFETs
Trap dynamics based 3D Kinetic Monte Carlo (KMC) simulator is developed to offer physical insights into the electrical characteristics degradation and quantitative reliability evaluation for advanced MOSFETs. The physics-based 3D KMC simulation enables to reproduce the evolution of stress-induced charge distribution in the multi-layer dielectrics and identify the trap impact on the degradation of device performance. Simulation results of UTBB FDSOI MOSFETs reveal that assumption of the uniform charge distribution in the dielectrics induced by stress underestimates the statistical degradation and variability. It also shows that the higher intrinsic trap density of back-gate oxide leads to the larger degradation and its variability, especially for the increased back-gate bias case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信