次笛卡儿微分空间的嵌入及其应用

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Qianqian Xia
{"title":"次笛卡儿微分空间的嵌入及其应用","authors":"Qianqian Xia","doi":"10.3934/jgm.2022007","DOIUrl":null,"url":null,"abstract":"Consider a locally compact, second countable and connected subcartesian differential space with finite structural dimension. We prove that it admits embedding into a Euclidean space. The Whitney embedding theorem for smooth manifolds can be treated as a corollary of embedding for subcartesian differential space. As applications of our embedding theorem, we show that both smooth generalized distributions and smooth generalized subbundles of vector bundles on subcartesian spaces are globally finitely generated. We show that every algebra isomorphism between the associative algebras of all smooth functions on two subcartesian differential spaces is the pullback by a smooth diffeomorphism between these two spaces.","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":"45 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On embedding of subcartesian differential space and application\",\"authors\":\"Qianqian Xia\",\"doi\":\"10.3934/jgm.2022007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a locally compact, second countable and connected subcartesian differential space with finite structural dimension. We prove that it admits embedding into a Euclidean space. The Whitney embedding theorem for smooth manifolds can be treated as a corollary of embedding for subcartesian differential space. As applications of our embedding theorem, we show that both smooth generalized distributions and smooth generalized subbundles of vector bundles on subcartesian spaces are globally finitely generated. We show that every algebra isomorphism between the associative algebras of all smooth functions on two subcartesian differential spaces is the pullback by a smooth diffeomorphism between these two spaces.\",\"PeriodicalId\":49161,\"journal\":{\"name\":\"Journal of Geometric Mechanics\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometric Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/jgm.2022007\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Mechanics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jgm.2022007","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

考虑一个结构维数有限的局部紧、次可数连通子笛卡儿微分空间。我们证明了它可以嵌入欧几里得空间。光滑流形的Whitney嵌入定理可以看作是次笛卡儿微分空间嵌入的一个推论。作为嵌入定理的应用,我们证明了子笛卡儿空间上的光滑广义分布和向量束的光滑广义子束是全局有限生成的。我们证明了两个子笛卡儿微分空间上所有光滑函数的结合代数之间的每一个代数同构是这两个空间之间的光滑微分同构的回调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On embedding of subcartesian differential space and application
Consider a locally compact, second countable and connected subcartesian differential space with finite structural dimension. We prove that it admits embedding into a Euclidean space. The Whitney embedding theorem for smooth manifolds can be treated as a corollary of embedding for subcartesian differential space. As applications of our embedding theorem, we show that both smooth generalized distributions and smooth generalized subbundles of vector bundles on subcartesian spaces are globally finitely generated. We show that every algebra isomorphism between the associative algebras of all smooth functions on two subcartesian differential spaces is the pullback by a smooth diffeomorphism between these two spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geometric Mechanics
Journal of Geometric Mechanics MATHEMATICS, APPLIED-PHYSICS, MATHEMATICAL
CiteScore
1.70
自引率
12.50%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Geometric Mechanics (JGM) aims to publish research articles devoted to geometric methods (in a broad sense) in mechanics and control theory, and intends to facilitate interaction between theory and applications. Advances in the following topics are welcomed by the journal: 1. Lagrangian and Hamiltonian mechanics 2. Symplectic and Poisson geometry and their applications to mechanics 3. Geometric and optimal control theory 4. Geometric and variational integration 5. Geometry of stochastic systems 6. Geometric methods in dynamical systems 7. Continuum mechanics 8. Classical field theory 9. Fluid mechanics 10. Infinite-dimensional dynamical systems 11. Quantum mechanics and quantum information theory 12. Applications in physics, technology, engineering and the biological sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信