基于电磁辐射信号的岩土材料破坏过程中的非线性类孤子振荡和波

V. D. Borisov
{"title":"基于电磁辐射信号的岩土材料破坏过程中的非线性类孤子振荡和波","authors":"V. D. Borisov","doi":"10.3390/foundations2030054","DOIUrl":null,"url":null,"abstract":"The work is devoted to the results of processing electromagnetic radiation signals obtained during laboratory loading of marble and diabase samples using a technique for determining the parameters of microcracks, developed and published by the author earlier. As a result of such processing, certain patterns were found in the nature of the evolution of the oscillatory process ensemble of microcracks. For example, solitary non-linear waves almost always preceded a sequence of High Frequency traces. Equations for straight lines approximating High Frequency traces in logarithmic coordinates, close to the equation of the Gutenberg–Richter law. Due to the similarity of seismic processes at different scale levels, the results of modeling at the microscale level can be used to describe seismic processes at the macroscale level, for example, to study the processes occurring immediately before destruction and at the time of destruction in order to search for repeatability and regularities. The regularities obtained can be used in the development of a predictive criterion that makes it possible to predict the time of one or another geophysical (seismic) event.","PeriodicalId":81291,"journal":{"name":"Foundations","volume":"140 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Soliton-like Oscillations and Waves during Geomaterial Destruction Based on Electromagnetic Radiation Signals\",\"authors\":\"V. D. Borisov\",\"doi\":\"10.3390/foundations2030054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work is devoted to the results of processing electromagnetic radiation signals obtained during laboratory loading of marble and diabase samples using a technique for determining the parameters of microcracks, developed and published by the author earlier. As a result of such processing, certain patterns were found in the nature of the evolution of the oscillatory process ensemble of microcracks. For example, solitary non-linear waves almost always preceded a sequence of High Frequency traces. Equations for straight lines approximating High Frequency traces in logarithmic coordinates, close to the equation of the Gutenberg–Richter law. Due to the similarity of seismic processes at different scale levels, the results of modeling at the microscale level can be used to describe seismic processes at the macroscale level, for example, to study the processes occurring immediately before destruction and at the time of destruction in order to search for repeatability and regularities. The regularities obtained can be used in the development of a predictive criterion that makes it possible to predict the time of one or another geophysical (seismic) event.\",\"PeriodicalId\":81291,\"journal\":{\"name\":\"Foundations\",\"volume\":\"140 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/foundations2030054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/foundations2030054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作致力于处理在大理石和辉绿岩样品的实验室加载过程中获得的电磁辐射信号,使用确定微裂纹参数的技术,由作者早些时候开发和发表。由于这样的处理,在微裂纹的振荡过程系综的演化性质中发现了某些模式。例如,孤立的非线性波几乎总是先于一系列高频迹线。在对数坐标中近似高频轨迹的直线方程,接近古腾堡-里希特定律的方程。由于地震过程在不同尺度上的相似性,微观尺度上的模拟结果可以用于描述宏观尺度上的地震过程,例如,研究地震破坏前和破坏时发生的过程,以寻找可重复性和规律性。所获得的规律可用于制定预测准则,使预测一个或另一个地球物理(地震)事件的时间成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear Soliton-like Oscillations and Waves during Geomaterial Destruction Based on Electromagnetic Radiation Signals
The work is devoted to the results of processing electromagnetic radiation signals obtained during laboratory loading of marble and diabase samples using a technique for determining the parameters of microcracks, developed and published by the author earlier. As a result of such processing, certain patterns were found in the nature of the evolution of the oscillatory process ensemble of microcracks. For example, solitary non-linear waves almost always preceded a sequence of High Frequency traces. Equations for straight lines approximating High Frequency traces in logarithmic coordinates, close to the equation of the Gutenberg–Richter law. Due to the similarity of seismic processes at different scale levels, the results of modeling at the microscale level can be used to describe seismic processes at the macroscale level, for example, to study the processes occurring immediately before destruction and at the time of destruction in order to search for repeatability and regularities. The regularities obtained can be used in the development of a predictive criterion that makes it possible to predict the time of one or another geophysical (seismic) event.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信