T. Ferrus, A. Rossi, T. Kodera, T. Kambara, W. Lin, S. Oda, D. Williams
{"title":"硅量子点中电子的微波操纵","authors":"T. Ferrus, A. Rossi, T. Kodera, T. Kambara, W. Lin, S. Oda, D. Williams","doi":"10.1109/SNW.2012.6243289","DOIUrl":null,"url":null,"abstract":"Here we present the results of an investigation on microwave-induced effects that we have observed in silicon devices, including phosphorous doped and Metal-Oxide-Semiconductor Single Electron Transistors (SET) as well as IDQD. Continuous pulsed microwave and single shot measurements are used to demonstrate that photons in the range of 10-15 GHz allow manipulation of the electron number in the island of a doped SET, despite the high value for the charging energy and in a regime where photon assisted tunnelling is not observable. The method is applied to a device made of a SET with a capacitively coupled IDQD. Partial control of the qubit is obtained and results in the possibility of manipulating charge states in an isolated structure with GHz photons.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"159 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microwave manipulation of electrons in silicon quantum dots\",\"authors\":\"T. Ferrus, A. Rossi, T. Kodera, T. Kambara, W. Lin, S. Oda, D. Williams\",\"doi\":\"10.1109/SNW.2012.6243289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here we present the results of an investigation on microwave-induced effects that we have observed in silicon devices, including phosphorous doped and Metal-Oxide-Semiconductor Single Electron Transistors (SET) as well as IDQD. Continuous pulsed microwave and single shot measurements are used to demonstrate that photons in the range of 10-15 GHz allow manipulation of the electron number in the island of a doped SET, despite the high value for the charging energy and in a regime where photon assisted tunnelling is not observable. The method is applied to a device made of a SET with a capacitively coupled IDQD. Partial control of the qubit is obtained and results in the possibility of manipulating charge states in an isolated structure with GHz photons.\",\"PeriodicalId\":6402,\"journal\":{\"name\":\"2012 IEEE Silicon Nanoelectronics Workshop (SNW)\",\"volume\":\"159 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Silicon Nanoelectronics Workshop (SNW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SNW.2012.6243289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNW.2012.6243289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microwave manipulation of electrons in silicon quantum dots
Here we present the results of an investigation on microwave-induced effects that we have observed in silicon devices, including phosphorous doped and Metal-Oxide-Semiconductor Single Electron Transistors (SET) as well as IDQD. Continuous pulsed microwave and single shot measurements are used to demonstrate that photons in the range of 10-15 GHz allow manipulation of the electron number in the island of a doped SET, despite the high value for the charging energy and in a regime where photon assisted tunnelling is not observable. The method is applied to a device made of a SET with a capacitively coupled IDQD. Partial control of the qubit is obtained and results in the possibility of manipulating charge states in an isolated structure with GHz photons.