公元前时代的细菌尾视素结构研究。

Biophysics and Physicobiology Pub Date : 2023-01-19 eCollection Date: 2023-03-21 DOI:10.2142/biophysico.bppb-v20.s006
Mikio Kataoka
{"title":"公元前时代的细菌尾视素结构研究。","authors":"Mikio Kataoka","doi":"10.2142/biophysico.bppb-v20.s006","DOIUrl":null,"url":null,"abstract":"<p><p>It marked half a century since the discovery of bacteriorhodopsin two years ago. On this occasion, I have revisited historically important diffraction studies of this membrane protein, based on my recollections. X-ray diffraction and electron diffraction, and electron microscopy, described the low-resolution structure of bacteriorhodopsin within the purple membrane. Neutron diffraction was effective to assign the helical regions in the primary structure with 7 rods revealed by low-resolution structure as well as to describe the retinal position. Substantial conformational changes upon light illumination were clarified by the structures of various photointermediates. Early trials of time-resolved studies were also introduced. Models for the mechanism of light-driven proton pump based on the low-resolution structural studies are also described. Significantly, they are not far from the today's understanding. I believe that the spirit of the early research scientists in this field and the essence of their studies, which constitute the foundations of the field, still actively fertilizes current membrane protein research.</p>","PeriodicalId":8976,"journal":{"name":"Biophysics and Physicobiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10865857/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structural studies of bacteriorhodopsin in BC era.\",\"authors\":\"Mikio Kataoka\",\"doi\":\"10.2142/biophysico.bppb-v20.s006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It marked half a century since the discovery of bacteriorhodopsin two years ago. On this occasion, I have revisited historically important diffraction studies of this membrane protein, based on my recollections. X-ray diffraction and electron diffraction, and electron microscopy, described the low-resolution structure of bacteriorhodopsin within the purple membrane. Neutron diffraction was effective to assign the helical regions in the primary structure with 7 rods revealed by low-resolution structure as well as to describe the retinal position. Substantial conformational changes upon light illumination were clarified by the structures of various photointermediates. Early trials of time-resolved studies were also introduced. Models for the mechanism of light-driven proton pump based on the low-resolution structural studies are also described. Significantly, they are not far from the today's understanding. I believe that the spirit of the early research scientists in this field and the essence of their studies, which constitute the foundations of the field, still actively fertilizes current membrane protein research.</p>\",\"PeriodicalId\":8976,\"journal\":{\"name\":\"Biophysics and Physicobiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10865857/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysics and Physicobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2142/biophysico.bppb-v20.s006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/21 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysics and Physicobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2142/biophysico.bppb-v20.s006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/21 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自两年前发现细菌尾视蛋白(bacteriorhodopsin)以来,已经过去了半个世纪。值此之际,我根据自己的回忆,重温了历史上对这种膜蛋白的重要衍射研究。X 射线衍射和电子衍射以及电子显微镜描述了紫膜内细菌眼色素的低分辨率结构。中子衍射法有效地将初级结构中的螺旋区域与低分辨率结构所揭示的 7 个杆状区域进行了归类,并描述了视网膜的位置。各种光介体的结构澄清了光照时构象的实质性变化。此外,还介绍了时间分辨研究的早期试验。还介绍了基于低分辨率结构研究的光驱动质子泵机制模型。值得注意的是,这些模型与今天的理解相去不远。我相信,早期科学家在这一领域的研究精神及其研究精髓,构成了这一领域的基础,仍在积极推动着当前的膜蛋白研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural studies of bacteriorhodopsin in BC era.

It marked half a century since the discovery of bacteriorhodopsin two years ago. On this occasion, I have revisited historically important diffraction studies of this membrane protein, based on my recollections. X-ray diffraction and electron diffraction, and electron microscopy, described the low-resolution structure of bacteriorhodopsin within the purple membrane. Neutron diffraction was effective to assign the helical regions in the primary structure with 7 rods revealed by low-resolution structure as well as to describe the retinal position. Substantial conformational changes upon light illumination were clarified by the structures of various photointermediates. Early trials of time-resolved studies were also introduced. Models for the mechanism of light-driven proton pump based on the low-resolution structural studies are also described. Significantly, they are not far from the today's understanding. I believe that the spirit of the early research scientists in this field and the essence of their studies, which constitute the foundations of the field, still actively fertilizes current membrane protein research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信