{"title":"部分平面模板的分割与跟踪","authors":"Abdelsalam Masoud, W. Hoff","doi":"10.1109/WACV.2014.6835731","DOIUrl":null,"url":null,"abstract":"We present an algorithm that can segment and track partial planar templates, from a sequence of images taken from a moving camera. By “partial planar template”, we mean that the template is the projection of a surface patch that is only partially planar; some of the points may correspond to other surfaces. The algorithm segments each image template to identify the pixels that belong to the dominant plane, and determines the three dimensional structure of that plane. We show that our algorithm can track such patches over a larger visual angle, compared to algorithms that assume that patches arise from a single planar surface. The new tracking algorithm is expected to improve the accuracy of visual simultaneous localization and mapping, especially in outdoor natural scenes where planar features are rare.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"432 1","pages":"1128-1133"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Segmentation and tracking of partial planar templates\",\"authors\":\"Abdelsalam Masoud, W. Hoff\",\"doi\":\"10.1109/WACV.2014.6835731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an algorithm that can segment and track partial planar templates, from a sequence of images taken from a moving camera. By “partial planar template”, we mean that the template is the projection of a surface patch that is only partially planar; some of the points may correspond to other surfaces. The algorithm segments each image template to identify the pixels that belong to the dominant plane, and determines the three dimensional structure of that plane. We show that our algorithm can track such patches over a larger visual angle, compared to algorithms that assume that patches arise from a single planar surface. The new tracking algorithm is expected to improve the accuracy of visual simultaneous localization and mapping, especially in outdoor natural scenes where planar features are rare.\",\"PeriodicalId\":73325,\"journal\":{\"name\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"volume\":\"432 1\",\"pages\":\"1128-1133\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2014.6835731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2014.6835731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Segmentation and tracking of partial planar templates
We present an algorithm that can segment and track partial planar templates, from a sequence of images taken from a moving camera. By “partial planar template”, we mean that the template is the projection of a surface patch that is only partially planar; some of the points may correspond to other surfaces. The algorithm segments each image template to identify the pixels that belong to the dominant plane, and determines the three dimensional structure of that plane. We show that our algorithm can track such patches over a larger visual angle, compared to algorithms that assume that patches arise from a single planar surface. The new tracking algorithm is expected to improve the accuracy of visual simultaneous localization and mapping, especially in outdoor natural scenes where planar features are rare.