{"title":"用视觉分析解释医疗保健中的人工智能","authors":"Jeroen Ooge, G. Štiglic, K. Verbert","doi":"10.1002/widm.1427","DOIUrl":null,"url":null,"abstract":"To make predictions and explore large datasets, healthcare is increasingly applying advanced algorithms of artificial intelligence. However, to make well‐considered and trustworthy decisions, healthcare professionals require ways to gain insights in these algorithms' outputs. One approach is visual analytics, which integrates humans in decision‐making through visualizations that facilitate interaction with algorithms. Although many visual analytics systems have been developed for healthcare, a clear overview of their explanation techniques is lacking. Therefore, we review 71 visual analytics systems for healthcare, and analyze how they explain advanced algorithms through visualization, interaction, shepherding, and direct explanation. Based on our analysis, we outline research opportunities and challenges to further guide the exciting rapprochement of visual analytics and healthcare.","PeriodicalId":48970,"journal":{"name":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","volume":"290 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Explaining artificial intelligence with visual analytics in healthcare\",\"authors\":\"Jeroen Ooge, G. Štiglic, K. Verbert\",\"doi\":\"10.1002/widm.1427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To make predictions and explore large datasets, healthcare is increasingly applying advanced algorithms of artificial intelligence. However, to make well‐considered and trustworthy decisions, healthcare professionals require ways to gain insights in these algorithms' outputs. One approach is visual analytics, which integrates humans in decision‐making through visualizations that facilitate interaction with algorithms. Although many visual analytics systems have been developed for healthcare, a clear overview of their explanation techniques is lacking. Therefore, we review 71 visual analytics systems for healthcare, and analyze how they explain advanced algorithms through visualization, interaction, shepherding, and direct explanation. Based on our analysis, we outline research opportunities and challenges to further guide the exciting rapprochement of visual analytics and healthcare.\",\"PeriodicalId\":48970,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery\",\"volume\":\"290 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2021-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/widm.1427\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/widm.1427","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Explaining artificial intelligence with visual analytics in healthcare
To make predictions and explore large datasets, healthcare is increasingly applying advanced algorithms of artificial intelligence. However, to make well‐considered and trustworthy decisions, healthcare professionals require ways to gain insights in these algorithms' outputs. One approach is visual analytics, which integrates humans in decision‐making through visualizations that facilitate interaction with algorithms. Although many visual analytics systems have been developed for healthcare, a clear overview of their explanation techniques is lacking. Therefore, we review 71 visual analytics systems for healthcare, and analyze how they explain advanced algorithms through visualization, interaction, shepherding, and direct explanation. Based on our analysis, we outline research opportunities and challenges to further guide the exciting rapprochement of visual analytics and healthcare.
期刊介绍:
The goals of Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery (WIREs DMKD) are multifaceted. Firstly, the journal aims to provide a comprehensive overview of the current state of data mining and knowledge discovery by featuring ongoing reviews authored by leading researchers. Secondly, it seeks to highlight the interdisciplinary nature of the field by presenting articles from diverse perspectives, covering various application areas such as technology, business, healthcare, education, government, society, and culture. Thirdly, WIREs DMKD endeavors to keep pace with the rapid advancements in data mining and knowledge discovery through regular content updates. Lastly, the journal strives to promote active engagement in the field by presenting its accomplishments and challenges in an accessible manner to a broad audience. The content of WIREs DMKD is intended to benefit upper-level undergraduate and postgraduate students, teaching and research professors in academic programs, as well as scientists and research managers in industry.