{"title":"Noor积分算子定义的一元函数的若干子类的几何性质","authors":"E. Amini, S. Al-Omari, H. Rahmatan","doi":"10.1515/anly-2022-1043","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we investigate subclasses of univalent functions over | z | < 1 \\lvert z\\rvert<1 , using the characterization of starlikeness and Noor integral operator defined by convolution of analytic functions. We also give coefficient bounds for the class of 𝛼-spiral function of order 𝜌 and 𝑘-uniformly 𝛼-spirallike functions. Moreover, we provide some examples of univalent functions to illustrate our results.","PeriodicalId":82310,"journal":{"name":"Philosophic research and analysis","volume":"253 1","pages":"251 - 259"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On geometric properties of certain subclasses of univalent functions defined by Noor integral operator\",\"authors\":\"E. Amini, S. Al-Omari, H. Rahmatan\",\"doi\":\"10.1515/anly-2022-1043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we investigate subclasses of univalent functions over | z | < 1 \\\\lvert z\\\\rvert<1 , using the characterization of starlikeness and Noor integral operator defined by convolution of analytic functions. We also give coefficient bounds for the class of 𝛼-spiral function of order 𝜌 and 𝑘-uniformly 𝛼-spirallike functions. Moreover, we provide some examples of univalent functions to illustrate our results.\",\"PeriodicalId\":82310,\"journal\":{\"name\":\"Philosophic research and analysis\",\"volume\":\"253 1\",\"pages\":\"251 - 259\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophic research and analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/anly-2022-1043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophic research and analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anly-2022-1043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
摘要利用解析函数的卷积定义的星形刻画和Noor积分算子,研究了| z | <1 \lvert z\rvert<1上的一元函数的子类。并给出了𝛼-spiral阶函数和𝑘-uniformly𝛼-spirallike阶函数的系数界。此外,我们还提供了一些单值函数的例子来说明我们的结果。
On geometric properties of certain subclasses of univalent functions defined by Noor integral operator
Abstract In this paper, we investigate subclasses of univalent functions over | z | < 1 \lvert z\rvert<1 , using the characterization of starlikeness and Noor integral operator defined by convolution of analytic functions. We also give coefficient bounds for the class of 𝛼-spiral function of order 𝜌 and 𝑘-uniformly 𝛼-spirallike functions. Moreover, we provide some examples of univalent functions to illustrate our results.