Amit B. Patel, P. Patel, Kajal Patel, K. Prajapati
{"title":"Synthesis of Fluorinated Piperazinyl Substituted Quinazolines as Potential Antibacterial Agents","authors":"Amit B. Patel, P. Patel, Kajal Patel, K. Prajapati","doi":"10.14233/ajomc.2020.ajomc-p284","DOIUrl":null,"url":null,"abstract":"In present study, fluorinated piperazine and benzonitrile/nicotinonitrile fused quinazoline derivatives have synthesized, characterized using FT-IR, 1H & 13C NMR, 19F NMR and MS analysis and evaluated as potential antibacterial agents. They were also tested against the multidrug resistant strains. The antibacterial activity results revealed that the majority of synthesized compounds exhibited potential antibacterial with the extraordinary level of minimum inhibitory concentrations comparable to the control drugs. Moreover, the influence of presence or absence of fluoro and trifluoromethyl functional groups on the piperazine ring systems towards different biological species is elaborated. The synthesized compounds were also found non-toxic on the human cervical (HeLa) cells at their minimum inhibitory concentrations.","PeriodicalId":8846,"journal":{"name":"Asian Journal of Organic & Medicinal Chemistry","volume":"407 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Organic & Medicinal Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14233/ajomc.2020.ajomc-p284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis of Fluorinated Piperazinyl Substituted Quinazolines as Potential Antibacterial Agents
In present study, fluorinated piperazine and benzonitrile/nicotinonitrile fused quinazoline derivatives have synthesized, characterized using FT-IR, 1H & 13C NMR, 19F NMR and MS analysis and evaluated as potential antibacterial agents. They were also tested against the multidrug resistant strains. The antibacterial activity results revealed that the majority of synthesized compounds exhibited potential antibacterial with the extraordinary level of minimum inhibitory concentrations comparable to the control drugs. Moreover, the influence of presence or absence of fluoro and trifluoromethyl functional groups on the piperazine ring systems towards different biological species is elaborated. The synthesized compounds were also found non-toxic on the human cervical (HeLa) cells at their minimum inhibitory concentrations.