James Humann, Michael Equi, Natalie Link, Perla Latorre-Suarez
{"title":"共享缆绳上的多个无人机:用例,建模和概率路径规划","authors":"James Humann, Michael Equi, Natalie Link, Perla Latorre-Suarez","doi":"10.1177/15485129231185588","DOIUrl":null,"url":null,"abstract":"We analyze the concept of multiple unmanned aerial vehicles (UAVs) on a shared tether (MUST), where the UAVs act as control nodes for the shape of the tether, enabling the system to maneuver around obstacles without tangling or colliding for increased flexibility compared with single-tethered UAVs. MUST use cases are gathered from stakeholders in the military, public safety, and commercial domains. We present a model for the tether shape to use in collision checking and a model for the interactions among tether weight, size, and power, which we exercise to determine the maximum tether segment sizes. We apply three probabilistic path-planning algorithms from the literature to MUSTs, using a novel local planner and constraint set. In simulation, we show that probabilistic planners are a feasible approach to path planning for MUSTs with curved tether segments. We also show the first manual piloting modality of MUSTs.","PeriodicalId":44661,"journal":{"name":"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple UAVs on a shared tether: Use cases, modeling, and probabilistic path planning\",\"authors\":\"James Humann, Michael Equi, Natalie Link, Perla Latorre-Suarez\",\"doi\":\"10.1177/15485129231185588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the concept of multiple unmanned aerial vehicles (UAVs) on a shared tether (MUST), where the UAVs act as control nodes for the shape of the tether, enabling the system to maneuver around obstacles without tangling or colliding for increased flexibility compared with single-tethered UAVs. MUST use cases are gathered from stakeholders in the military, public safety, and commercial domains. We present a model for the tether shape to use in collision checking and a model for the interactions among tether weight, size, and power, which we exercise to determine the maximum tether segment sizes. We apply three probabilistic path-planning algorithms from the literature to MUSTs, using a novel local planner and constraint set. In simulation, we show that probabilistic planners are a feasible approach to path planning for MUSTs with curved tether segments. We also show the first manual piloting modality of MUSTs.\",\"PeriodicalId\":44661,\"journal\":{\"name\":\"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/15485129231185588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15485129231185588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Multiple UAVs on a shared tether: Use cases, modeling, and probabilistic path planning
We analyze the concept of multiple unmanned aerial vehicles (UAVs) on a shared tether (MUST), where the UAVs act as control nodes for the shape of the tether, enabling the system to maneuver around obstacles without tangling or colliding for increased flexibility compared with single-tethered UAVs. MUST use cases are gathered from stakeholders in the military, public safety, and commercial domains. We present a model for the tether shape to use in collision checking and a model for the interactions among tether weight, size, and power, which we exercise to determine the maximum tether segment sizes. We apply three probabilistic path-planning algorithms from the literature to MUSTs, using a novel local planner and constraint set. In simulation, we show that probabilistic planners are a feasible approach to path planning for MUSTs with curved tether segments. We also show the first manual piloting modality of MUSTs.