从S3到S2的映射,其点逆具有圆的形状

D.S. Coram , P.F. Duvall Jr.
{"title":"从S3到S2的映射,其点逆具有圆的形状","authors":"D.S. Coram ,&nbsp;P.F. Duvall Jr.","doi":"10.1016/0016-660X(79)90037-0","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>f</em>:<em>S</em><sup>3</sup>→<em>S</em><sup>2</sup> be a continuous function. If <em>y</em>ϵ<em>S</em><sup>2</sup> assume that <em>f</em><sup>-1</sup> (<em>y</em>) has the shape of a circle and that there are neighborhoods <em>V</em> ⊂ <em>U</em> of <em>f</em><sup>-1</sup>(<em>y</em>) such that for any point inverse <em>f</em><sup>-1</sup>(<em>z</em>)⊂<em>V</em>, the inclusion of <em>f</em><sup>-1</sup>(<em>z</em>) into <em>U</em> is essential. We show that <em>f</em> can be approximated arbitrarily closely by Seifert fiber maps.</p></div>","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"10 3","pages":"Pages 239-246"},"PeriodicalIF":0.0000,"publicationDate":"1979-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0016-660X(79)90037-0","citationCount":"21","resultStr":"{\"title\":\"Mappings from S3 to S2 whose point inverses Have the shape of a circle\",\"authors\":\"D.S. Coram ,&nbsp;P.F. Duvall Jr.\",\"doi\":\"10.1016/0016-660X(79)90037-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>f</em>:<em>S</em><sup>3</sup>→<em>S</em><sup>2</sup> be a continuous function. If <em>y</em>ϵ<em>S</em><sup>2</sup> assume that <em>f</em><sup>-1</sup> (<em>y</em>) has the shape of a circle and that there are neighborhoods <em>V</em> ⊂ <em>U</em> of <em>f</em><sup>-1</sup>(<em>y</em>) such that for any point inverse <em>f</em><sup>-1</sup>(<em>z</em>)⊂<em>V</em>, the inclusion of <em>f</em><sup>-1</sup>(<em>z</em>) into <em>U</em> is essential. We show that <em>f</em> can be approximated arbitrarily closely by Seifert fiber maps.</p></div>\",\"PeriodicalId\":100574,\"journal\":{\"name\":\"General Topology and its Applications\",\"volume\":\"10 3\",\"pages\":\"Pages 239-246\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1979-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0016-660X(79)90037-0\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Topology and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0016660X79900370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Topology and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0016660X79900370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

设f:S3→S2为连续函数。如果yϵS2假设f-1(y)具有圆的形状,并且存在f-1(y)的邻域V∧U,使得对于任意点逆f-1(z)∧V,将f-1(z)包含到U中是必要的。我们证明f可以用Seifert纤维图任意近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mappings from S3 to S2 whose point inverses Have the shape of a circle

Let f:S3S2 be a continuous function. If yϵS2 assume that f-1 (y) has the shape of a circle and that there are neighborhoods VU of f-1(y) such that for any point inverse f-1(z)⊂V, the inclusion of f-1(z) into U is essential. We show that f can be approximated arbitrarily closely by Seifert fiber maps.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信