Mehrnoosh Raoufi, Quan Deng, Youtao Zhang, Jun Yang
{"title":"PageCmp:通过内存中页面比较的带宽高效页面重复数据删除","authors":"Mehrnoosh Raoufi, Quan Deng, Youtao Zhang, Jun Yang","doi":"10.1109/ISVLSI.2019.00023","DOIUrl":null,"url":null,"abstract":"KSM-based page deduplication is an important Linux system service for reducing main memory consumption on cloud servers. However, it tends to incur large computation and memory bandwidth overheads. Recently proposed hardware-assisted KSM approaches, while effectively addressing the computation overhead, still need to consume a dramatic amount of off-chip memory bandwidth. In this paper, we propose PageCmp, a PIM (Processing-In-Memory) based page deduplication approach, to achieve bandwidth efficiency on cloud servers. PageCmp exploits the bitwise operation capability inside the DRAM cell array to enable fast page comparison. By integrating a lightweight local comparator inside the output buffer of DRAM modules, PageCmp sends only the page comparison result back to the processor. Our experimental results show that, comparing to the state-of-the-art, PageCmp achieves 4x memory bandwidth reduction while introducing less than 1% hardware overhead.","PeriodicalId":6703,"journal":{"name":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"96 1","pages":"82-87"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"PageCmp: Bandwidth Efficient Page Deduplication through In-memory Page Comparison\",\"authors\":\"Mehrnoosh Raoufi, Quan Deng, Youtao Zhang, Jun Yang\",\"doi\":\"10.1109/ISVLSI.2019.00023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"KSM-based page deduplication is an important Linux system service for reducing main memory consumption on cloud servers. However, it tends to incur large computation and memory bandwidth overheads. Recently proposed hardware-assisted KSM approaches, while effectively addressing the computation overhead, still need to consume a dramatic amount of off-chip memory bandwidth. In this paper, we propose PageCmp, a PIM (Processing-In-Memory) based page deduplication approach, to achieve bandwidth efficiency on cloud servers. PageCmp exploits the bitwise operation capability inside the DRAM cell array to enable fast page comparison. By integrating a lightweight local comparator inside the output buffer of DRAM modules, PageCmp sends only the page comparison result back to the processor. Our experimental results show that, comparing to the state-of-the-art, PageCmp achieves 4x memory bandwidth reduction while introducing less than 1% hardware overhead.\",\"PeriodicalId\":6703,\"journal\":{\"name\":\"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"volume\":\"96 1\",\"pages\":\"82-87\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI.2019.00023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2019.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PageCmp: Bandwidth Efficient Page Deduplication through In-memory Page Comparison
KSM-based page deduplication is an important Linux system service for reducing main memory consumption on cloud servers. However, it tends to incur large computation and memory bandwidth overheads. Recently proposed hardware-assisted KSM approaches, while effectively addressing the computation overhead, still need to consume a dramatic amount of off-chip memory bandwidth. In this paper, we propose PageCmp, a PIM (Processing-In-Memory) based page deduplication approach, to achieve bandwidth efficiency on cloud servers. PageCmp exploits the bitwise operation capability inside the DRAM cell array to enable fast page comparison. By integrating a lightweight local comparator inside the output buffer of DRAM modules, PageCmp sends only the page comparison result back to the processor. Our experimental results show that, comparing to the state-of-the-art, PageCmp achieves 4x memory bandwidth reduction while introducing less than 1% hardware overhead.