M. Brinkhuis, Á. Kristjánsson, B. Harvey, J. Brascamp
{"title":"注意转移启动的时间特征反映在额顶叶注意网络的BOLD反应模式上","authors":"M. Brinkhuis, Á. Kristjánsson, B. Harvey, J. Brascamp","doi":"10.1093/cercor/bhz238","DOIUrl":null,"url":null,"abstract":"Abstract Priming of attention shifts involves the reduction in search RTs that occurs when target location or target features repeat. We used functional magnetic resonance imaging to investigate the neural basis of such attentional priming, specifically focusing on its temporal characteristics over trial sequences. We first replicated earlier findings by showing that repetition of target color and of target location from the immediately preceding trial both result in reduced blood oxygen level-dependent (BOLD) signals in a cortical network that encompasses occipital, parietal, and frontal cortices: lag-1 repetition suppression. While such lag-1 suppression can have a number of explanations, behaviorally, the influence of attentional priming extends further, with the influence of past search trials gradually decaying across multiple subsequent trials. Our results reveal that the same regions within the frontoparietal network that show lag-1 suppression, also show longer term BOLD reductions that diminish over the course of several trial presentations, keeping pace with the decaying behavioral influence of past target properties across trials. This distinct parallel between the across-trial patterns of cortical BOLD and search RT reductions, provides strong evidence that these cortical areas play a key role in attentional priming.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"43 1","pages":"2267 - 2280"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Temporal Characteristics of Priming of Attention Shifts Are Mirrored by BOLD Response Patterns in the Frontoparietal Attention Network\",\"authors\":\"M. Brinkhuis, Á. Kristjánsson, B. Harvey, J. Brascamp\",\"doi\":\"10.1093/cercor/bhz238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Priming of attention shifts involves the reduction in search RTs that occurs when target location or target features repeat. We used functional magnetic resonance imaging to investigate the neural basis of such attentional priming, specifically focusing on its temporal characteristics over trial sequences. We first replicated earlier findings by showing that repetition of target color and of target location from the immediately preceding trial both result in reduced blood oxygen level-dependent (BOLD) signals in a cortical network that encompasses occipital, parietal, and frontal cortices: lag-1 repetition suppression. While such lag-1 suppression can have a number of explanations, behaviorally, the influence of attentional priming extends further, with the influence of past search trials gradually decaying across multiple subsequent trials. Our results reveal that the same regions within the frontoparietal network that show lag-1 suppression, also show longer term BOLD reductions that diminish over the course of several trial presentations, keeping pace with the decaying behavioral influence of past target properties across trials. This distinct parallel between the across-trial patterns of cortical BOLD and search RT reductions, provides strong evidence that these cortical areas play a key role in attentional priming.\",\"PeriodicalId\":9825,\"journal\":{\"name\":\"Cerebral Cortex (New York, NY)\",\"volume\":\"43 1\",\"pages\":\"2267 - 2280\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cerebral Cortex (New York, NY)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/cercor/bhz238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral Cortex (New York, NY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/cercor/bhz238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Temporal Characteristics of Priming of Attention Shifts Are Mirrored by BOLD Response Patterns in the Frontoparietal Attention Network
Abstract Priming of attention shifts involves the reduction in search RTs that occurs when target location or target features repeat. We used functional magnetic resonance imaging to investigate the neural basis of such attentional priming, specifically focusing on its temporal characteristics over trial sequences. We first replicated earlier findings by showing that repetition of target color and of target location from the immediately preceding trial both result in reduced blood oxygen level-dependent (BOLD) signals in a cortical network that encompasses occipital, parietal, and frontal cortices: lag-1 repetition suppression. While such lag-1 suppression can have a number of explanations, behaviorally, the influence of attentional priming extends further, with the influence of past search trials gradually decaying across multiple subsequent trials. Our results reveal that the same regions within the frontoparietal network that show lag-1 suppression, also show longer term BOLD reductions that diminish over the course of several trial presentations, keeping pace with the decaying behavioral influence of past target properties across trials. This distinct parallel between the across-trial patterns of cortical BOLD and search RT reductions, provides strong evidence that these cortical areas play a key role in attentional priming.