Beka Ergemlidze, E. Györi, Abhishek Methuku, Nika Salia, C. Tompkins, Oscar Zamora
{"title":"避免长Berge周期:缺少k = r + 1和k = r + 2的情况","authors":"Beka Ergemlidze, E. Györi, Abhishek Methuku, Nika Salia, C. Tompkins, Oscar Zamora","doi":"10.1017/S0963548319000415","DOIUrl":null,"url":null,"abstract":"Abstract The maximum size of an r-uniform hypergraph without a Berge cycle of length at least k has been determined for all k ≥ r + 3 by Füredi, Kostochka and Luo and for k < r (and k = r, asymptotically) by Kostochka and Luo. In this paper we settle the remaining cases: k = r + 1 and k = r + 2, proving a conjecture of Füredi, Kostochka and Luo.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Avoiding long Berge cycles: the missing cases k = r + 1 and k = r + 2\",\"authors\":\"Beka Ergemlidze, E. Györi, Abhishek Methuku, Nika Salia, C. Tompkins, Oscar Zamora\",\"doi\":\"10.1017/S0963548319000415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The maximum size of an r-uniform hypergraph without a Berge cycle of length at least k has been determined for all k ≥ r + 3 by Füredi, Kostochka and Luo and for k < r (and k = r, asymptotically) by Kostochka and Luo. In this paper we settle the remaining cases: k = r + 1 and k = r + 2, proving a conjecture of Füredi, Kostochka and Luo.\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S0963548319000415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0963548319000415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
摘要
摘要本文用f redi、Kostochka和Luo分别求出了对于所有k≥r + 3,以及对于k < r(且k = r,渐近地),无Berge环的r-一致超图的最大尺寸。本文解决了k = r + 1和k = r + 2的剩余情况,证明了f redi, Kostochka和Luo的一个猜想。
Avoiding long Berge cycles: the missing cases k = r + 1 and k = r + 2
Abstract The maximum size of an r-uniform hypergraph without a Berge cycle of length at least k has been determined for all k ≥ r + 3 by Füredi, Kostochka and Luo and for k < r (and k = r, asymptotically) by Kostochka and Luo. In this paper we settle the remaining cases: k = r + 1 and k = r + 2, proving a conjecture of Füredi, Kostochka and Luo.