避免长Berge周期:缺少k = r + 1和k = r + 2的情况

Beka Ergemlidze, E. Györi, Abhishek Methuku, Nika Salia, C. Tompkins, Oscar Zamora
{"title":"避免长Berge周期:缺少k = r + 1和k = r + 2的情况","authors":"Beka Ergemlidze, E. Györi, Abhishek Methuku, Nika Salia, C. Tompkins, Oscar Zamora","doi":"10.1017/S0963548319000415","DOIUrl":null,"url":null,"abstract":"Abstract The maximum size of an r-uniform hypergraph without a Berge cycle of length at least k has been determined for all k ≥ r + 3 by Füredi, Kostochka and Luo and for k < r (and k = r, asymptotically) by Kostochka and Luo. In this paper we settle the remaining cases: k = r + 1 and k = r + 2, proving a conjecture of Füredi, Kostochka and Luo.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Avoiding long Berge cycles: the missing cases k = r + 1 and k = r + 2\",\"authors\":\"Beka Ergemlidze, E. Györi, Abhishek Methuku, Nika Salia, C. Tompkins, Oscar Zamora\",\"doi\":\"10.1017/S0963548319000415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The maximum size of an r-uniform hypergraph without a Berge cycle of length at least k has been determined for all k ≥ r + 3 by Füredi, Kostochka and Luo and for k < r (and k = r, asymptotically) by Kostochka and Luo. In this paper we settle the remaining cases: k = r + 1 and k = r + 2, proving a conjecture of Füredi, Kostochka and Luo.\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S0963548319000415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0963548319000415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

摘要本文用f redi、Kostochka和Luo分别求出了对于所有k≥r + 3,以及对于k < r(且k = r,渐近地),无Berge环的r-一致超图的最大尺寸。本文解决了k = r + 1和k = r + 2的剩余情况,证明了f redi, Kostochka和Luo的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Avoiding long Berge cycles: the missing cases k = r + 1 and k = r + 2
Abstract The maximum size of an r-uniform hypergraph without a Berge cycle of length at least k has been determined for all k ≥ r + 3 by Füredi, Kostochka and Luo and for k < r (and k = r, asymptotically) by Kostochka and Luo. In this paper we settle the remaining cases: k = r + 1 and k = r + 2, proving a conjecture of Füredi, Kostochka and Luo.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信