等谱旋转的随机矩阵理论

Salvatore F. E. Oliviero, L. Leone, F. Caravelli, A. Hamma
{"title":"等谱旋转的随机矩阵理论","authors":"Salvatore F. E. Oliviero, L. Leone, F. Caravelli, A. Hamma","doi":"10.21468/SCIPOSTPHYS.10.3.076","DOIUrl":null,"url":null,"abstract":"In this paper, we present a systematic construction of probes into the dynamics of isospectral ensembles of Hamiltonians by the notion of Isospectral twirling, expanding the scopes and methods of ref.[1]. The relevant ensembles of Hamiltonians are those defined by salient spectral probability distributions. The Gaussian Unitary Ensembles (GUE) describes a class of quantum chaotic Hamiltonians, while spectra corresponding to the Poisson and Gaussian Diagonal Ensemble (GDE) describe non chaotic, integrable dynamics. We compute the Isospectral twirling of several classes of important quantities in the analysis of quantum many-body systems: Frame potentials, Loschmidt Echos, OTOCS, Entanglement, Tripartite mutual information, coherence, distance to equilibrium states, work in quantum batteries and extension to CP-maps. Moreover, we perform averages in these ensembles by random matrix theory and show how these quantities clearly separate chaotic quantum dynamics from non chaotic ones.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":"126 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Random matrix theory of the isospectral twirling\",\"authors\":\"Salvatore F. E. Oliviero, L. Leone, F. Caravelli, A. Hamma\",\"doi\":\"10.21468/SCIPOSTPHYS.10.3.076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a systematic construction of probes into the dynamics of isospectral ensembles of Hamiltonians by the notion of Isospectral twirling, expanding the scopes and methods of ref.[1]. The relevant ensembles of Hamiltonians are those defined by salient spectral probability distributions. The Gaussian Unitary Ensembles (GUE) describes a class of quantum chaotic Hamiltonians, while spectra corresponding to the Poisson and Gaussian Diagonal Ensemble (GDE) describe non chaotic, integrable dynamics. We compute the Isospectral twirling of several classes of important quantities in the analysis of quantum many-body systems: Frame potentials, Loschmidt Echos, OTOCS, Entanglement, Tripartite mutual information, coherence, distance to equilibrium states, work in quantum batteries and extension to CP-maps. Moreover, we perform averages in these ensembles by random matrix theory and show how these quantities clearly separate chaotic quantum dynamics from non chaotic ones.\",\"PeriodicalId\":8484,\"journal\":{\"name\":\"arXiv: Quantum Physics\",\"volume\":\"126 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantum Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21468/SCIPOSTPHYS.10.3.076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21468/SCIPOSTPHYS.10.3.076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在本文中,我们用等谱旋转的概念系统地构建了哈密顿量等谱系综动力学的探针,扩展了文献[1]的范围和方法。哈密顿量的相关系综是由显著谱概率分布定义的系综。高斯统一系综(GUE)描述了一类量子混沌哈密顿量,而对应于泊松系综和高斯对角系综(GDE)的谱描述了非混沌的可积动力学。我们计算了量子多体系统分析中几类重要量的等谱旋:框架势、Loschmidt回声、OTOCS、纠缠、三边互信息、相干、到平衡态的距离、量子电池中的功和cp -map的扩展。此外,我们用随机矩阵理论对这些系综进行了平均,并展示了这些量如何清楚地将混沌量子动力学与非混沌量子动力学区分开来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random matrix theory of the isospectral twirling
In this paper, we present a systematic construction of probes into the dynamics of isospectral ensembles of Hamiltonians by the notion of Isospectral twirling, expanding the scopes and methods of ref.[1]. The relevant ensembles of Hamiltonians are those defined by salient spectral probability distributions. The Gaussian Unitary Ensembles (GUE) describes a class of quantum chaotic Hamiltonians, while spectra corresponding to the Poisson and Gaussian Diagonal Ensemble (GDE) describe non chaotic, integrable dynamics. We compute the Isospectral twirling of several classes of important quantities in the analysis of quantum many-body systems: Frame potentials, Loschmidt Echos, OTOCS, Entanglement, Tripartite mutual information, coherence, distance to equilibrium states, work in quantum batteries and extension to CP-maps. Moreover, we perform averages in these ensembles by random matrix theory and show how these quantities clearly separate chaotic quantum dynamics from non chaotic ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信