{"title":"肖特基在伊辛模型中被遗忘的一步","authors":"Reinhard Folk, Yurij Holovatch","doi":"10.1140/epjh/s13129-022-00041-0","DOIUrl":null,"url":null,"abstract":"<div><p>A longstanding problem in natural science and later in physics was the understanding of the existence of ferromagnetism and its disappearance under heating to high temperatures. Although a qualitative description was possible by the Curie–Weiss theory, it was obvious that a microscopic model was necessary to explain the tendency of the elementary magnetons to prefer parallel ordering at low temperatures. Such a model was proposed in 1922 by Schottky within the old Bohr–Sommerfeld quantum mechanics and claimed to explain the high values of the Curie temperatures of certain ferromagnets. Based on this idea Ising formulated a new model for ferromagnetism in solids. Simultaneously the old quantum mechanics was replaced by new concepts of Heisenberg and Schrödinger and the discovery of spin. Thus Schottky’s idea was outperformed and finally replaced in 1928 by Heisenberg exchange interaction. This led to a reformulation of Ising’s model by Pauli at the Solvay conference in 1930. Nevertheless one might consider Schottky’s idea as a forerunner of this development explaining and asserting that the main point is the Coulomb energy leading to the essential interaction of neighboring elementary magnets.</p></div>","PeriodicalId":791,"journal":{"name":"The European Physical Journal H","volume":"47 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjh/s13129-022-00041-0.pdf","citationCount":"1","resultStr":"{\"title\":\"Schottky’s forgotten step to the Ising model\",\"authors\":\"Reinhard Folk, Yurij Holovatch\",\"doi\":\"10.1140/epjh/s13129-022-00041-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A longstanding problem in natural science and later in physics was the understanding of the existence of ferromagnetism and its disappearance under heating to high temperatures. Although a qualitative description was possible by the Curie–Weiss theory, it was obvious that a microscopic model was necessary to explain the tendency of the elementary magnetons to prefer parallel ordering at low temperatures. Such a model was proposed in 1922 by Schottky within the old Bohr–Sommerfeld quantum mechanics and claimed to explain the high values of the Curie temperatures of certain ferromagnets. Based on this idea Ising formulated a new model for ferromagnetism in solids. Simultaneously the old quantum mechanics was replaced by new concepts of Heisenberg and Schrödinger and the discovery of spin. Thus Schottky’s idea was outperformed and finally replaced in 1928 by Heisenberg exchange interaction. This led to a reformulation of Ising’s model by Pauli at the Solvay conference in 1930. Nevertheless one might consider Schottky’s idea as a forerunner of this development explaining and asserting that the main point is the Coulomb energy leading to the essential interaction of neighboring elementary magnets.</p></div>\",\"PeriodicalId\":791,\"journal\":{\"name\":\"The European Physical Journal H\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjh/s13129-022-00041-0.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal H\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjh/s13129-022-00041-0\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HISTORY & PHILOSOPHY OF SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal H","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjh/s13129-022-00041-0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
A longstanding problem in natural science and later in physics was the understanding of the existence of ferromagnetism and its disappearance under heating to high temperatures. Although a qualitative description was possible by the Curie–Weiss theory, it was obvious that a microscopic model was necessary to explain the tendency of the elementary magnetons to prefer parallel ordering at low temperatures. Such a model was proposed in 1922 by Schottky within the old Bohr–Sommerfeld quantum mechanics and claimed to explain the high values of the Curie temperatures of certain ferromagnets. Based on this idea Ising formulated a new model for ferromagnetism in solids. Simultaneously the old quantum mechanics was replaced by new concepts of Heisenberg and Schrödinger and the discovery of spin. Thus Schottky’s idea was outperformed and finally replaced in 1928 by Heisenberg exchange interaction. This led to a reformulation of Ising’s model by Pauli at the Solvay conference in 1930. Nevertheless one might consider Schottky’s idea as a forerunner of this development explaining and asserting that the main point is the Coulomb energy leading to the essential interaction of neighboring elementary magnets.
期刊介绍:
The purpose of this journal is to catalyse, foster, and disseminate an awareness and understanding of the historical development of ideas in contemporary physics, and more generally, ideas about how Nature works.
The scope explicitly includes:
- Contributions addressing the history of physics and of physical ideas and concepts, the interplay of physics and mathematics as well as the natural sciences, and the history and philosophy of sciences, together with discussions of experimental ideas and designs - inasmuch as they clearly relate, and preferably add, to the understanding of modern physics.
- Annotated and/or contextual translations of relevant foreign-language texts.
- Careful characterisations of old and/or abandoned ideas including past mistakes and false leads, thereby helping working physicists to assess how compelling contemporary ideas may turn out to be in future, i.e. with hindsight.