非紧康托集上的跃迁及其定义树上的随机游动

IF 1.2 2区 数学 Q2 STATISTICS & PROBABILITY
Jun Kigami
{"title":"非紧康托集上的跃迁及其定义树上的随机游动","authors":"Jun Kigami","doi":"10.1214/12-AIHP496","DOIUrl":null,"url":null,"abstract":"First, noncompact Cantor sets along with their defining trees are introduced as a natural generalization of p-adic numbers. Secondly we construct a class of jump processes on a noncompact Cantor set from given pairs of eigenvalues and measures. At the same time, we have concrete expressions of the associated jump kernels and transition densities. Then we construct intrinsic metrics on noncompact Cantor set to obtain estimates of transition densities and jump kernels under some regularity conditions on eigenvalues and measures . Finally transient random walks on the defining tree are shown to induce a subclass of jump processes discussed in the second part.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"104 1","pages":"1090-1129"},"PeriodicalIF":1.2000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Transitions on a noncompact Cantor set and random walks on its defining tree\",\"authors\":\"Jun Kigami\",\"doi\":\"10.1214/12-AIHP496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"First, noncompact Cantor sets along with their defining trees are introduced as a natural generalization of p-adic numbers. Secondly we construct a class of jump processes on a noncompact Cantor set from given pairs of eigenvalues and measures. At the same time, we have concrete expressions of the associated jump kernels and transition densities. Then we construct intrinsic metrics on noncompact Cantor set to obtain estimates of transition densities and jump kernels under some regularity conditions on eigenvalues and measures . Finally transient random walks on the defining tree are shown to induce a subclass of jump processes discussed in the second part.\",\"PeriodicalId\":7902,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"volume\":\"104 1\",\"pages\":\"1090-1129\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/12-AIHP496\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/12-AIHP496","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 27

摘要

首先,引入非紧康托集及其定义树作为p进数的自然推广。其次,从给定的特征值对和测度对构造非紧康托集上的一类跳跃过程。同时,我们得到了相关跳核和跃迁密度的具体表达式。然后构造非紧康托集上的固有度量,得到特征值和测度在某些正则性条件下的跃迁密度和跳跃核的估计。最后,证明了定义树上的瞬态随机游走可以产生第二部分讨论的跳跃过程的子类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transitions on a noncompact Cantor set and random walks on its defining tree
First, noncompact Cantor sets along with their defining trees are introduced as a natural generalization of p-adic numbers. Secondly we construct a class of jump processes on a noncompact Cantor set from given pairs of eigenvalues and measures. At the same time, we have concrete expressions of the associated jump kernels and transition densities. Then we construct intrinsic metrics on noncompact Cantor set to obtain estimates of transition densities and jump kernels under some regularity conditions on eigenvalues and measures . Finally transient random walks on the defining tree are shown to induce a subclass of jump processes discussed in the second part.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信