{"title":"非紧康托集上的跃迁及其定义树上的随机游动","authors":"Jun Kigami","doi":"10.1214/12-AIHP496","DOIUrl":null,"url":null,"abstract":"First, noncompact Cantor sets along with their defining trees are introduced as a natural generalization of p-adic numbers. Secondly we construct a class of jump processes on a noncompact Cantor set from given pairs of eigenvalues and measures. At the same time, we have concrete expressions of the associated jump kernels and transition densities. Then we construct intrinsic metrics on noncompact Cantor set to obtain estimates of transition densities and jump kernels under some regularity conditions on eigenvalues and measures . Finally transient random walks on the defining tree are shown to induce a subclass of jump processes discussed in the second part.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"104 1","pages":"1090-1129"},"PeriodicalIF":1.2000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Transitions on a noncompact Cantor set and random walks on its defining tree\",\"authors\":\"Jun Kigami\",\"doi\":\"10.1214/12-AIHP496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"First, noncompact Cantor sets along with their defining trees are introduced as a natural generalization of p-adic numbers. Secondly we construct a class of jump processes on a noncompact Cantor set from given pairs of eigenvalues and measures. At the same time, we have concrete expressions of the associated jump kernels and transition densities. Then we construct intrinsic metrics on noncompact Cantor set to obtain estimates of transition densities and jump kernels under some regularity conditions on eigenvalues and measures . Finally transient random walks on the defining tree are shown to induce a subclass of jump processes discussed in the second part.\",\"PeriodicalId\":7902,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"volume\":\"104 1\",\"pages\":\"1090-1129\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/12-AIHP496\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/12-AIHP496","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Transitions on a noncompact Cantor set and random walks on its defining tree
First, noncompact Cantor sets along with their defining trees are introduced as a natural generalization of p-adic numbers. Secondly we construct a class of jump processes on a noncompact Cantor set from given pairs of eigenvalues and measures. At the same time, we have concrete expressions of the associated jump kernels and transition densities. Then we construct intrinsic metrics on noncompact Cantor set to obtain estimates of transition densities and jump kernels under some regularity conditions on eigenvalues and measures . Finally transient random walks on the defining tree are shown to induce a subclass of jump processes discussed in the second part.
期刊介绍:
The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.