温度预测的无监督神经方法

J.M. Corchado , C. Fyfe
{"title":"温度预测的无监督神经方法","authors":"J.M. Corchado ,&nbsp;C. Fyfe","doi":"10.1016/S0954-1810(99)00007-2","DOIUrl":null,"url":null,"abstract":"<div><p>This article presents the results of using a novel Negative Feedback Artificial Neural Network for extraction of models of the thermal structure of oceanographic water masses and to forecast time series in real time. The results obtained using this model are compared with those obtained using a Linear Regression and an ARIMA model. The article presents the Negative Feedback Artificial Neural Network, shows how it extracts the model behind the data set and discuses the Artificial Neural Network’s forecasting abilities.</p></div>","PeriodicalId":100123,"journal":{"name":"Artificial Intelligence in Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0954-1810(99)00007-2","citationCount":"80","resultStr":"{\"title\":\"Unsupervised neural method for temperature forecasting\",\"authors\":\"J.M. Corchado ,&nbsp;C. Fyfe\",\"doi\":\"10.1016/S0954-1810(99)00007-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article presents the results of using a novel Negative Feedback Artificial Neural Network for extraction of models of the thermal structure of oceanographic water masses and to forecast time series in real time. The results obtained using this model are compared with those obtained using a Linear Regression and an ARIMA model. The article presents the Negative Feedback Artificial Neural Network, shows how it extracts the model behind the data set and discuses the Artificial Neural Network’s forecasting abilities.</p></div>\",\"PeriodicalId\":100123,\"journal\":{\"name\":\"Artificial Intelligence in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0954-1810(99)00007-2\",\"citationCount\":\"80\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0954181099000072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0954181099000072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 80

摘要

本文介绍了一种新的负反馈人工神经网络用于海洋水团热结构模型的提取和时间序列的实时预报的结果。将该模型与线性回归和ARIMA模型的结果进行了比较。本文介绍了负反馈人工神经网络,展示了它如何提取数据集背后的模型,并讨论了人工神经网络的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised neural method for temperature forecasting

This article presents the results of using a novel Negative Feedback Artificial Neural Network for extraction of models of the thermal structure of oceanographic water masses and to forecast time series in real time. The results obtained using this model are compared with those obtained using a Linear Regression and an ARIMA model. The article presents the Negative Feedback Artificial Neural Network, shows how it extracts the model behind the data set and discuses the Artificial Neural Network’s forecasting abilities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信