基于时间失真传播模型的帧级量化控制视频编码

Haibing Yin, Dong Li, Yu Lu, Yang Zhou
{"title":"基于时间失真传播模型的帧级量化控制视频编码","authors":"Haibing Yin, Dong Li, Yu Lu, Yang Zhou","doi":"10.1109/ISCAS.2018.8351718","DOIUrl":null,"url":null,"abstract":"In video coder, inter-frame prediction causes distortion propagation among temporally adjacent frames, which complicates frame level bit allocation and quantization control. Quantization parameter cascading (QPC) is generally employed to determine a sequence of quantization parameter for dependent rate distortion optimization (RDO). This paper proposes a general framework for temporal dependency analysis by lever-aging a distortion propagation model. The amount of distortion propagated from the temporally adjacent frames is measured by tree-style dependent analysis. Then, a trellis comprised of frame level quantization parameters of one GOP is constructed to achieve global optimization via branch-prune based dynamic programming. The simulation results verify that the frame level QPC algorithm with the proposed distortion model achieves up to 1.2dB—1.5dB PSNR improvement on average, with smaller temporal distortion fluctuation contributed by efficient bit allocation.","PeriodicalId":91083,"journal":{"name":"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems","volume":"169 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Frame Level Quantization Control with Temporal Distortion Propagation Model for Video Coding\",\"authors\":\"Haibing Yin, Dong Li, Yu Lu, Yang Zhou\",\"doi\":\"10.1109/ISCAS.2018.8351718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In video coder, inter-frame prediction causes distortion propagation among temporally adjacent frames, which complicates frame level bit allocation and quantization control. Quantization parameter cascading (QPC) is generally employed to determine a sequence of quantization parameter for dependent rate distortion optimization (RDO). This paper proposes a general framework for temporal dependency analysis by lever-aging a distortion propagation model. The amount of distortion propagated from the temporally adjacent frames is measured by tree-style dependent analysis. Then, a trellis comprised of frame level quantization parameters of one GOP is constructed to achieve global optimization via branch-prune based dynamic programming. The simulation results verify that the frame level QPC algorithm with the proposed distortion model achieves up to 1.2dB—1.5dB PSNR improvement on average, with smaller temporal distortion fluctuation contributed by efficient bit allocation.\",\"PeriodicalId\":91083,\"journal\":{\"name\":\"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems\",\"volume\":\"169 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2018.8351718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2018.8351718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在视频编码器中,帧间预测会导致失真在时间相邻帧之间传播,使帧级比特分配和量化控制变得复杂。在相关率失真优化(RDO)中,通常采用量化参数级联(QPC)来确定量化参数序列。本文提出了一种利用失真传播模型进行时间相关性分析的通用框架。从时间上相邻的帧传播的失真量通过树式相关分析来测量。然后,通过基于分支剪枝的动态规划,构建了由单个GOP的帧级量化参数组成的网格,实现全局优化。仿真结果表明,采用该失真模型的帧级QPC算法平均可提高1.2 db ~ 1.5 db的PSNR,且有效的比特分配有助于减小时间失真波动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frame Level Quantization Control with Temporal Distortion Propagation Model for Video Coding
In video coder, inter-frame prediction causes distortion propagation among temporally adjacent frames, which complicates frame level bit allocation and quantization control. Quantization parameter cascading (QPC) is generally employed to determine a sequence of quantization parameter for dependent rate distortion optimization (RDO). This paper proposes a general framework for temporal dependency analysis by lever-aging a distortion propagation model. The amount of distortion propagated from the temporally adjacent frames is measured by tree-style dependent analysis. Then, a trellis comprised of frame level quantization parameters of one GOP is constructed to achieve global optimization via branch-prune based dynamic programming. The simulation results verify that the frame level QPC algorithm with the proposed distortion model achieves up to 1.2dB—1.5dB PSNR improvement on average, with smaller temporal distortion fluctuation contributed by efficient bit allocation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信