{"title":"裸盖菇素在自然界中的进化与生态学研究。","authors":"M. Meyer, J. Slot","doi":"10.2139/ssrn.4384673","DOIUrl":null,"url":null,"abstract":"Fungi produce diverse metabolites that can have antimicrobial, antifungal, antifeedant, or psychoactive properties. Among these metabolites are the tryptamine-derived compounds psilocybin, its precursors, and natural derivatives (collectively referred to as psiloids), which have played significant roles in human society and culture. The high allocation of nitrogen to psiloids in mushrooms, along with evidence of convergent evolution and horizontal transfer of psilocybin genes, suggest they provide a selective benefit to some fungi. However, no precise ecological roles of psilocybin have been experimentally determined. The structural and functional similarities of psiloids to serotonin, an essential neurotransmitter in animals, suggest that they may enhance the fitness of fungi through interference with serotonergic processes. However, other ecological mechanisms of psiloids have been proposed. Here, we review the literature pertinent to psilocybin ecology and propose potential adaptive advantages psiloids may confer to fungi.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Evolution and Ecology of Psilocybin in Nature.\",\"authors\":\"M. Meyer, J. Slot\",\"doi\":\"10.2139/ssrn.4384673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fungi produce diverse metabolites that can have antimicrobial, antifungal, antifeedant, or psychoactive properties. Among these metabolites are the tryptamine-derived compounds psilocybin, its precursors, and natural derivatives (collectively referred to as psiloids), which have played significant roles in human society and culture. The high allocation of nitrogen to psiloids in mushrooms, along with evidence of convergent evolution and horizontal transfer of psilocybin genes, suggest they provide a selective benefit to some fungi. However, no precise ecological roles of psilocybin have been experimentally determined. The structural and functional similarities of psiloids to serotonin, an essential neurotransmitter in animals, suggest that they may enhance the fitness of fungi through interference with serotonergic processes. However, other ecological mechanisms of psiloids have been proposed. Here, we review the literature pertinent to psilocybin ecology and propose potential adaptive advantages psiloids may confer to fungi.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.4384673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2139/ssrn.4384673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
The Evolution and Ecology of Psilocybin in Nature.
Fungi produce diverse metabolites that can have antimicrobial, antifungal, antifeedant, or psychoactive properties. Among these metabolites are the tryptamine-derived compounds psilocybin, its precursors, and natural derivatives (collectively referred to as psiloids), which have played significant roles in human society and culture. The high allocation of nitrogen to psiloids in mushrooms, along with evidence of convergent evolution and horizontal transfer of psilocybin genes, suggest they provide a selective benefit to some fungi. However, no precise ecological roles of psilocybin have been experimentally determined. The structural and functional similarities of psiloids to serotonin, an essential neurotransmitter in animals, suggest that they may enhance the fitness of fungi through interference with serotonergic processes. However, other ecological mechanisms of psiloids have been proposed. Here, we review the literature pertinent to psilocybin ecology and propose potential adaptive advantages psiloids may confer to fungi.