基于相变材料热自由度的高可扩展性和低能耗模拟尖峰处理

T. Yajima, T. Nishimura, A. Toriumi
{"title":"基于相变材料热自由度的高可扩展性和低能耗模拟尖峰处理","authors":"T. Yajima, T. Nishimura, A. Toriumi","doi":"10.1109/VLSIT.2018.8510649","DOIUrl":null,"url":null,"abstract":"Spike integration and threshold processing are the basic signal processing in brain-inspired computing, such as deep learning, reservoir computing etc. In such processes, analog technology is essential for suppressing energy consumption. However, analog technology often faces problems in miniaturization due to deteriorated noise tolerance by scaling and intrinsically large analog elements such as capacitors. Here, we propose to exploit a thermal degree of freedom in phase transition materials for scalable and noise-tolerant analog spike processing. We focus on a two-terminal metal-insulator-transition VO2 device, where quasi-adiabatic Joule heating enables efficient spike integration, and metal-insulator transition implements threshold processing. This VO2 device is highly scalable, consuming only ~1fJ/spike (smallest so far) according to the simulation. By using this device, fully autonomous spike integration and threshold processing are also demonstrated. Exploiting the quasi-adiabatic thermal degree of freedom will facilitate scalable and energy-efficient analog implementation for a wide range of brain-inspired computing.","PeriodicalId":6561,"journal":{"name":"2018 IEEE Symposium on VLSI Technology","volume":"224 1","pages":"27-28"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Analog Spike Processing with High Scalability and Low Energy Consumption Using Thermal Degree of Freedom in Phase Transition Materials\",\"authors\":\"T. Yajima, T. Nishimura, A. Toriumi\",\"doi\":\"10.1109/VLSIT.2018.8510649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spike integration and threshold processing are the basic signal processing in brain-inspired computing, such as deep learning, reservoir computing etc. In such processes, analog technology is essential for suppressing energy consumption. However, analog technology often faces problems in miniaturization due to deteriorated noise tolerance by scaling and intrinsically large analog elements such as capacitors. Here, we propose to exploit a thermal degree of freedom in phase transition materials for scalable and noise-tolerant analog spike processing. We focus on a two-terminal metal-insulator-transition VO2 device, where quasi-adiabatic Joule heating enables efficient spike integration, and metal-insulator transition implements threshold processing. This VO2 device is highly scalable, consuming only ~1fJ/spike (smallest so far) according to the simulation. By using this device, fully autonomous spike integration and threshold processing are also demonstrated. Exploiting the quasi-adiabatic thermal degree of freedom will facilitate scalable and energy-efficient analog implementation for a wide range of brain-inspired computing.\",\"PeriodicalId\":6561,\"journal\":{\"name\":\"2018 IEEE Symposium on VLSI Technology\",\"volume\":\"224 1\",\"pages\":\"27-28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIT.2018.8510649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.2018.8510649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

尖峰积分和阈值处理是深度学习、储层计算等脑启发计算中的基本信号处理方法。在这样的过程中,模拟技术是必不可少的,以抑制能源消耗。然而,模拟技术往往面临小型化的问题,由于缩放和本质上较大的模拟元件,如电容器的噪声容限恶化。在这里,我们建议利用相变材料的热自由度来进行可扩展和耐噪声的模拟尖峰处理。我们重点研究了一种双端金属-绝缘体过渡VO2器件,其中准绝热焦耳加热实现了高效的尖峰集成,金属-绝缘体过渡实现了阈值处理。该VO2器件具有高度可扩展性,根据模拟,仅消耗~1fJ/spike(迄今为止最小)。利用该装置,还演示了完全自主的脉冲集成和阈值处理。利用准绝热自由度将促进可扩展和节能的模拟实现,用于广泛的脑启发计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analog Spike Processing with High Scalability and Low Energy Consumption Using Thermal Degree of Freedom in Phase Transition Materials
Spike integration and threshold processing are the basic signal processing in brain-inspired computing, such as deep learning, reservoir computing etc. In such processes, analog technology is essential for suppressing energy consumption. However, analog technology often faces problems in miniaturization due to deteriorated noise tolerance by scaling and intrinsically large analog elements such as capacitors. Here, we propose to exploit a thermal degree of freedom in phase transition materials for scalable and noise-tolerant analog spike processing. We focus on a two-terminal metal-insulator-transition VO2 device, where quasi-adiabatic Joule heating enables efficient spike integration, and metal-insulator transition implements threshold processing. This VO2 device is highly scalable, consuming only ~1fJ/spike (smallest so far) according to the simulation. By using this device, fully autonomous spike integration and threshold processing are also demonstrated. Exploiting the quasi-adiabatic thermal degree of freedom will facilitate scalable and energy-efficient analog implementation for a wide range of brain-inspired computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信