纯积分条件下高阶分数阶偏微分方程解的存在唯一性

D. Chergui, A. Merad, S. Pinelas
{"title":"纯积分条件下高阶分数阶偏微分方程解的存在唯一性","authors":"D. Chergui, A. Merad, S. Pinelas","doi":"10.1515/anly-2021-0016","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we prove the existence and uniqueness of Caputo time fractional pseudo-hyperbolic equations of higher order with purely nonlocal conditions of integral type. We use an a priori estimate method; the so-called energy inequalities method, based on some functional analysis tools, is developed for a Caputo time fractional of 2 ⁢ m {2m} -th and ( 2 ⁢ m + 1 ) {(2m+1)} -th order and the density of the range of the operator generated by the considered problem. Using the Laplace transform and homotopy perturbation, we find a semi-analytical solution. Finally, we give some examples for illustration.","PeriodicalId":82310,"journal":{"name":"Philosophic research and analysis","volume":"1 1","pages":"1 - 13"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Existence and uniqueness of solutions to higher order fractional partial differential equations with purely integral conditions\",\"authors\":\"D. Chergui, A. Merad, S. Pinelas\",\"doi\":\"10.1515/anly-2021-0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we prove the existence and uniqueness of Caputo time fractional pseudo-hyperbolic equations of higher order with purely nonlocal conditions of integral type. We use an a priori estimate method; the so-called energy inequalities method, based on some functional analysis tools, is developed for a Caputo time fractional of 2 ⁢ m {2m} -th and ( 2 ⁢ m + 1 ) {(2m+1)} -th order and the density of the range of the operator generated by the considered problem. Using the Laplace transform and homotopy perturbation, we find a semi-analytical solution. Finally, we give some examples for illustration.\",\"PeriodicalId\":82310,\"journal\":{\"name\":\"Philosophic research and analysis\",\"volume\":\"1 1\",\"pages\":\"1 - 13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophic research and analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/anly-2021-0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophic research and analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anly-2021-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文证明了具有纯非局部积分型条件的高阶Caputo时间分数型伪双曲方程的存在唯一性。我们使用先验估计方法;基于一些泛函分析工具,提出了针对2∑m {2m} -th阶和(2∑m+1) {(2m+1)} -th阶的Caputo时间分数和所考虑问题生成的算子的值域密度的能量不等式方法。利用拉普拉斯变换和同伦摄动,我们得到了一个半解析解。最后,我们给出了一些例子来说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and uniqueness of solutions to higher order fractional partial differential equations with purely integral conditions
Abstract In this paper, we prove the existence and uniqueness of Caputo time fractional pseudo-hyperbolic equations of higher order with purely nonlocal conditions of integral type. We use an a priori estimate method; the so-called energy inequalities method, based on some functional analysis tools, is developed for a Caputo time fractional of 2 ⁢ m {2m} -th and ( 2 ⁢ m + 1 ) {(2m+1)} -th order and the density of the range of the operator generated by the considered problem. Using the Laplace transform and homotopy perturbation, we find a semi-analytical solution. Finally, we give some examples for illustration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信