利用 BIGA 云计算平台分析 GWAS 摘要统计中的双变量跨性状遗传结构。

Yujue Li, Fei Xue, Bingxuan Li, Yilin Yang, Zirui Fan, Juan Shu, Xiaochen Yang, Xiyao Wang, Jinjie Lin, Carlos Copana, Bingxin Zhao
{"title":"利用 BIGA 云计算平台分析 GWAS 摘要统计中的双变量跨性状遗传结构。","authors":"Yujue Li, Fei Xue, Bingxuan Li, Yilin Yang, Zirui Fan, Juan Shu, Xiaochen Yang, Xiyao Wang, Jinjie Lin, Carlos Copana, Bingxin Zhao","doi":"10.1101/2023.04.28.538585","DOIUrl":null,"url":null,"abstract":"<p><p>As large-scale biobanks provide increasing access to deep phenotyping and genomic data, genome-wide association studies (GWAS) are rapidly uncovering the genetic architecture behind various complex traits and diseases. GWAS publications typically make their summary-level data (GWAS summary statistics) publicly available, enabling further exploration of genetic overlaps between phenotypes gathered from different studies and cohorts. However, systematically analyzing high-dimensional GWAS summary statistics for thousands of phenotypes can be both logistically challenging and computationally demanding. In this paper, we introduce BIGA (https://bigagwas.org/), a website that aims to offer unified data analysis pipelines and processed data resources for cross-trait genetic architecture analyses using GWAS summary statistics. We have developed a framework to implement statistical genetics tools on a cloud computing platform, combined with extensive curated GWAS data resources. Through BIGA, users can upload data, submit jobs, and share results, providing the research community with a convenient tool for consolidating GWAS data and generating new insights.</p>","PeriodicalId":17203,"journal":{"name":"Journal of The American Dietetic Association","volume":"32 4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10979906/pdf/","citationCount":"0","resultStr":"{\"title\":\"Analyzing bivariate cross-trait genetic architecture in GWAS summary statistics with the BIGA cloud computing platform.\",\"authors\":\"Yujue Li, Fei Xue, Bingxuan Li, Yilin Yang, Zirui Fan, Juan Shu, Xiaochen Yang, Xiyao Wang, Jinjie Lin, Carlos Copana, Bingxin Zhao\",\"doi\":\"10.1101/2023.04.28.538585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As large-scale biobanks provide increasing access to deep phenotyping and genomic data, genome-wide association studies (GWAS) are rapidly uncovering the genetic architecture behind various complex traits and diseases. GWAS publications typically make their summary-level data (GWAS summary statistics) publicly available, enabling further exploration of genetic overlaps between phenotypes gathered from different studies and cohorts. However, systematically analyzing high-dimensional GWAS summary statistics for thousands of phenotypes can be both logistically challenging and computationally demanding. In this paper, we introduce BIGA (https://bigagwas.org/), a website that aims to offer unified data analysis pipelines and processed data resources for cross-trait genetic architecture analyses using GWAS summary statistics. We have developed a framework to implement statistical genetics tools on a cloud computing platform, combined with extensive curated GWAS data resources. Through BIGA, users can upload data, submit jobs, and share results, providing the research community with a convenient tool for consolidating GWAS data and generating new insights.</p>\",\"PeriodicalId\":17203,\"journal\":{\"name\":\"Journal of The American Dietetic Association\",\"volume\":\"32 4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10979906/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The American Dietetic Association\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.04.28.538585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Dietetic Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.04.28.538585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着大规模生物库提供越来越多的深度表型和基因组数据,全基因组关联研究(GWAS)正在迅速揭示各种复杂性状和疾病背后的遗传结构。全基因组关联研究出版物通常会公开其摘要级数据(全基因组关联研究摘要统计),以便进一步探索从不同研究和队列中收集的表型之间的遗传重叠。然而,系统分析数千种表型的高维 GWAS 摘要统计在逻辑上具有挑战性,在计算上要求也很高。在本文中,我们介绍了 BIGA ( https://bigagwas.org/ ),该网站旨在提供统一的数据分析管道和处理过的数据资源,用于使用 GWAS 摘要统计进行跨性状遗传结构分析。我们开发了一个在云计算平台上实现统计遗传学工具的框架,并结合了广泛的 GWAS 数据资源。通过 BIGA,用户可以上传数据、提交作业和分享结果,为研究界提供了一个整合 GWAS 数据和产生新见解的便捷工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing bivariate cross-trait genetic architecture in GWAS summary statistics with the BIGA cloud computing platform.

As large-scale biobanks provide increasing access to deep phenotyping and genomic data, genome-wide association studies (GWAS) are rapidly uncovering the genetic architecture behind various complex traits and diseases. GWAS publications typically make their summary-level data (GWAS summary statistics) publicly available, enabling further exploration of genetic overlaps between phenotypes gathered from different studies and cohorts. However, systematically analyzing high-dimensional GWAS summary statistics for thousands of phenotypes can be both logistically challenging and computationally demanding. In this paper, we introduce BIGA (https://bigagwas.org/), a website that aims to offer unified data analysis pipelines and processed data resources for cross-trait genetic architecture analyses using GWAS summary statistics. We have developed a framework to implement statistical genetics tools on a cloud computing platform, combined with extensive curated GWAS data resources. Through BIGA, users can upload data, submit jobs, and share results, providing the research community with a convenient tool for consolidating GWAS data and generating new insights.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信