选定生物材料的碳化,趋势和前景

{"title":"选定生物材料的碳化,趋势和前景","authors":"","doi":"10.33263/lianbs123.068","DOIUrl":null,"url":null,"abstract":"The exploration of new materials as well as methods and sources of their production is a constantly growing trend in both scientific and industrial directions. One such method is carbonization, which has attracted a lot of attention over the past decades. Carbonization is the process of preparation of 3D carbonaceous materials with unique properties by thermal treatments with the exclusion of oxygen. A higher specific surface area characterizes the obtained nanoporous carbon materials compared to their precursors, and, consequently, they can be used in such fields as biotechnology, electrochemistry, or electronic industry. Special attention has been directed to the carbonization of nanoorganized biological materials due to their extensive composition and unique hierarchical structure. This review aims to provide insight into the examples of carbonization of selected biomaterials such as polysaccharides (cellulose, chitin) and proteins (keratin, spongin, silk) evidenced by excellent and successful examples from the recent literature. In addition, this work highlights the most significant aspects of diverse experiments, allowing getting inspiration for fields such as materials science and well extreme biomimetics.","PeriodicalId":18009,"journal":{"name":"Letters in Applied NanoBioScience","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Carbonization of Selected Biological Materials, Trends, and Perspectives\",\"authors\":\"\",\"doi\":\"10.33263/lianbs123.068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The exploration of new materials as well as methods and sources of their production is a constantly growing trend in both scientific and industrial directions. One such method is carbonization, which has attracted a lot of attention over the past decades. Carbonization is the process of preparation of 3D carbonaceous materials with unique properties by thermal treatments with the exclusion of oxygen. A higher specific surface area characterizes the obtained nanoporous carbon materials compared to their precursors, and, consequently, they can be used in such fields as biotechnology, electrochemistry, or electronic industry. Special attention has been directed to the carbonization of nanoorganized biological materials due to their extensive composition and unique hierarchical structure. This review aims to provide insight into the examples of carbonization of selected biomaterials such as polysaccharides (cellulose, chitin) and proteins (keratin, spongin, silk) evidenced by excellent and successful examples from the recent literature. In addition, this work highlights the most significant aspects of diverse experiments, allowing getting inspiration for fields such as materials science and well extreme biomimetics.\",\"PeriodicalId\":18009,\"journal\":{\"name\":\"Letters in Applied NanoBioScience\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Applied NanoBioScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33263/lianbs123.068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Applied NanoBioScience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33263/lianbs123.068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

探索新材料及其生产方法和来源是科学和工业方向上不断发展的趋势。其中一种方法是碳化,在过去的几十年里引起了很多关注。碳化是在不含氧的条件下通过热处理制备具有独特性能的三维碳质材料的过程。与它们的前体相比,获得的纳米多孔碳材料具有更高的比表面积,因此,它们可以用于诸如生物技术,电化学或电子工业等领域。纳米组织生物材料由于其广泛的组成和独特的层次结构而被特别关注。这篇综述的目的是提供一些生物材料如多糖(纤维素,几丁质)和蛋白质(角蛋白,海绵蛋白,丝)的碳化的例子,从最近的文献中证明了优秀的和成功的例子。此外,这项工作突出了各种实验的最重要方面,为材料科学和极端仿生学等领域提供了灵感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Carbonization of Selected Biological Materials, Trends, and Perspectives
The exploration of new materials as well as methods and sources of their production is a constantly growing trend in both scientific and industrial directions. One such method is carbonization, which has attracted a lot of attention over the past decades. Carbonization is the process of preparation of 3D carbonaceous materials with unique properties by thermal treatments with the exclusion of oxygen. A higher specific surface area characterizes the obtained nanoporous carbon materials compared to their precursors, and, consequently, they can be used in such fields as biotechnology, electrochemistry, or electronic industry. Special attention has been directed to the carbonization of nanoorganized biological materials due to their extensive composition and unique hierarchical structure. This review aims to provide insight into the examples of carbonization of selected biomaterials such as polysaccharides (cellulose, chitin) and proteins (keratin, spongin, silk) evidenced by excellent and successful examples from the recent literature. In addition, this work highlights the most significant aspects of diverse experiments, allowing getting inspiration for fields such as materials science and well extreme biomimetics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信