一种改进的高鲁棒性Kriging代理模型方法用于电机优化

IF 0.2 Q4 AREA STUDIES
Junli Zhang, W. Hua, Yuan Gao, Yuchen Wang, Hengliang Zhang
{"title":"一种改进的高鲁棒性Kriging代理模型方法用于电机优化","authors":"Junli Zhang, W. Hua, Yuan Gao, Yuchen Wang, Hengliang Zhang","doi":"10.1109/ITECAsia-Pacific56316.2022.9942076","DOIUrl":null,"url":null,"abstract":"The uncertainties of electrical machines manufacturing decrease the prediction precision of traditional multi-objective optimization methods based on Kriging surrogate model. Existing robust optimization method requires a large amount of calculation time. In order to improve the accurateness and release the computational burden of the Kriging surrogate model method in the robust optimization, two genetic algorithm (GA)-based optimization methods with different sample principles are proposed and compared. The one is adding the final optimization result of GA as the samples into the surrogate model, while the other one is adding the samples from the GA process for the target surrogate model. Taking a 12-slot 14-pole interior permanent magnet (IPM) machine as a case study, the simulation results show that the latter one is more accurate than the former. Furthermore, the comparison between the deterministic optimization and robust optimization in the case study demonstrates the superior of the second GA method.","PeriodicalId":45126,"journal":{"name":"Asia-Pacific Journal-Japan Focus","volume":"40 1","pages":"1-6"},"PeriodicalIF":0.2000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved Kriging surrogate model method with high robustness for electrical machine optimization\",\"authors\":\"Junli Zhang, W. Hua, Yuan Gao, Yuchen Wang, Hengliang Zhang\",\"doi\":\"10.1109/ITECAsia-Pacific56316.2022.9942076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The uncertainties of electrical machines manufacturing decrease the prediction precision of traditional multi-objective optimization methods based on Kriging surrogate model. Existing robust optimization method requires a large amount of calculation time. In order to improve the accurateness and release the computational burden of the Kriging surrogate model method in the robust optimization, two genetic algorithm (GA)-based optimization methods with different sample principles are proposed and compared. The one is adding the final optimization result of GA as the samples into the surrogate model, while the other one is adding the samples from the GA process for the target surrogate model. Taking a 12-slot 14-pole interior permanent magnet (IPM) machine as a case study, the simulation results show that the latter one is more accurate than the former. Furthermore, the comparison between the deterministic optimization and robust optimization in the case study demonstrates the superior of the second GA method.\",\"PeriodicalId\":45126,\"journal\":{\"name\":\"Asia-Pacific Journal-Japan Focus\",\"volume\":\"40 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal-Japan Focus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITECAsia-Pacific56316.2022.9942076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AREA STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal-Japan Focus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITECAsia-Pacific56316.2022.9942076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AREA STUDIES","Score":null,"Total":0}
引用次数: 0

摘要

电机制造过程的不确定性降低了传统的基于Kriging代理模型的多目标优化方法的预测精度。现有的鲁棒优化方法需要大量的计算时间。为了提高Kriging代理模型方法在鲁棒优化中的准确性和减轻计算量,提出了两种基于遗传算法的不同样本原理的优化方法,并对其进行了比较。一种是将遗传算法的最终优化结果作为样本添加到代理模型中,另一种是将遗传算法过程中的样本添加到目标代理模型中。以12槽14极内永磁体(IPM)为例,仿真结果表明,后者比前者更精确。通过实例分析,对比了确定性优化和鲁棒优化,验证了第二种遗传算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved Kriging surrogate model method with high robustness for electrical machine optimization
The uncertainties of electrical machines manufacturing decrease the prediction precision of traditional multi-objective optimization methods based on Kriging surrogate model. Existing robust optimization method requires a large amount of calculation time. In order to improve the accurateness and release the computational burden of the Kriging surrogate model method in the robust optimization, two genetic algorithm (GA)-based optimization methods with different sample principles are proposed and compared. The one is adding the final optimization result of GA as the samples into the surrogate model, while the other one is adding the samples from the GA process for the target surrogate model. Taking a 12-slot 14-pole interior permanent magnet (IPM) machine as a case study, the simulation results show that the latter one is more accurate than the former. Furthermore, the comparison between the deterministic optimization and robust optimization in the case study demonstrates the superior of the second GA method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信