{"title":"车辆方向余弦计算方法","authors":"Derek Hall, Timothy A. Sands","doi":"10.3390/vehicles5010008","DOIUrl":null,"url":null,"abstract":"Teaching kinematic rotations is a daunting task for even some of the most advanced mathematical minds. However, changing the paradigm can highly simplify envisioning and explaining the three-dimensional rotations. This paradigm change allows a high school student with an understanding of geometry to develop the matrix and explain the rotations at a collegiate level. The proposed method includes the assumption of a point (P) within the initial three-dimensional frame with axes (x^i, y^i, z^i). The method then utilizes a two-dimensional rotation view (2DRV) to measure how the coordinates of point P translate after a rotation around the initial axis. The equations are used in matrix notation to develop a rotation matrix for follow-on direction cosine matrixes. The method removes the requirement to use Euler’s formula, ultimately, providing a high school student with an elementary and repeatable process to compose and explain kinematic rotations, which are critical to attitude direction control systems commonly found in vehicles.","PeriodicalId":73282,"journal":{"name":"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium","volume":"348 2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vehicle Directional Cosine Calculation Method\",\"authors\":\"Derek Hall, Timothy A. Sands\",\"doi\":\"10.3390/vehicles5010008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Teaching kinematic rotations is a daunting task for even some of the most advanced mathematical minds. However, changing the paradigm can highly simplify envisioning and explaining the three-dimensional rotations. This paradigm change allows a high school student with an understanding of geometry to develop the matrix and explain the rotations at a collegiate level. The proposed method includes the assumption of a point (P) within the initial three-dimensional frame with axes (x^i, y^i, z^i). The method then utilizes a two-dimensional rotation view (2DRV) to measure how the coordinates of point P translate after a rotation around the initial axis. The equations are used in matrix notation to develop a rotation matrix for follow-on direction cosine matrixes. The method removes the requirement to use Euler’s formula, ultimately, providing a high school student with an elementary and repeatable process to compose and explain kinematic rotations, which are critical to attitude direction control systems commonly found in vehicles.\",\"PeriodicalId\":73282,\"journal\":{\"name\":\"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium\",\"volume\":\"348 2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/vehicles5010008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vehicles5010008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Teaching kinematic rotations is a daunting task for even some of the most advanced mathematical minds. However, changing the paradigm can highly simplify envisioning and explaining the three-dimensional rotations. This paradigm change allows a high school student with an understanding of geometry to develop the matrix and explain the rotations at a collegiate level. The proposed method includes the assumption of a point (P) within the initial three-dimensional frame with axes (x^i, y^i, z^i). The method then utilizes a two-dimensional rotation view (2DRV) to measure how the coordinates of point P translate after a rotation around the initial axis. The equations are used in matrix notation to develop a rotation matrix for follow-on direction cosine matrixes. The method removes the requirement to use Euler’s formula, ultimately, providing a high school student with an elementary and repeatable process to compose and explain kinematic rotations, which are critical to attitude direction control systems commonly found in vehicles.