Ne22(α,γ)Mg26和Ne22(α,n)Mg25反应速率的重新评估

IF 3.2 2区 物理与天体物理 Q2 PHYSICS, NUCLEAR
P. Adsley, U. Battino, A. Best, A. Caciolli, A. Guglielmetti, G. Imbriani, H. Jayatissa, M. La Cognata, L. Lamia, E. Masha, C. Massimi, S. Palmerini, A. Tattersall, R. Hirschi
{"title":"Ne22(α,γ)Mg26和Ne22(α,n)Mg25反应速率的重新评估","authors":"P. Adsley, U. Battino, A. Best, A. Caciolli, A. Guglielmetti, G. Imbriani, H. Jayatissa, M. La Cognata, L. Lamia, E. Masha, C. Massimi, S. Palmerini, A. Tattersall, R. Hirschi","doi":"10.1103/PHYSREVC.103.015805","DOIUrl":null,"url":null,"abstract":"Background: The competing $^{22}\\mathrm{Ne}(\\ensuremath{\\alpha},\\ensuremath{\\gamma})^{26}\\mathrm{Mg}$ and $^{22}\\mathrm{Ne}(\\ensuremath{\\alpha},n)^{25}\\mathrm{Mg}$ reactions control the production of neutrons for the weak $s$ process in massive and asymptotic giant branch (AGB) stars. In both systems, the ratio between the corresponding reaction rates strongly impacts the total neutron budget and strongly influences the final nucleosynthesis. A number of experimental studies have been performed over recent years which necessitate the reevaluation of the $^{22}\\mathrm{Ne}(\\ensuremath{\\alpha},\\ensuremath{\\gamma})^{26}\\mathrm{Mg}$ and $^{22}\\mathrm{Ne}(\\ensuremath{\\alpha},n)^{25}\\mathrm{Mg}$ reaction rates. Evaluations of the reaction rates following the collection of new nuclear data presently show differences of up to a factor of 500, resulting in considerable uncertainty in the resulting nucleosynthesis.Purpose: To reevaluate the $^{22}\\mathrm{Ne}(\\ensuremath{\\alpha},\\ensuremath{\\gamma})^{26}\\mathrm{Mg}$ and $^{22}\\mathrm{Ne}(\\ensuremath{\\alpha},n)^{25}\\mathrm{Mg}$ reaction rates using updated nuclear data from a number of sources including updating spin and parity assignments.Methods: With updated spin and parity assignments, the levels which can contribute to the reaction rates are identified. The reaction rates are computed using a Monte Carlo method which has been used for previous evaluations of the reaction rates in order to focus solely on the changes due to modified nuclear data.Results: The evaluated $^{22}\\mathrm{Ne}(\\ensuremath{\\alpha},\\ensuremath{\\gamma})^{26}\\mathrm{Mg}$ reaction rate remains substantially similar to that of Longland et al. but, including recent results from Texas A, the $^{22}\\mathrm{Ne}(\\ensuremath{\\alpha},n)^{25}\\mathrm{Mg}$ reaction rate is lower at a range of astrophysically important temperatures. Stellar models computed with newton and mesa predict decreased production of the weak branch $s$ process due to the decreased efficiency of $^{22}\\mathrm{Ne}$ as a neutron source. Using the new reaction rates in the mesa model results in $^{96}\\mathrm{Zr}/^{94}\\mathrm{Zr}$ and $^{135}\\mathrm{Ba}/^{136}\\mathrm{Ba}$ ratios in much better agreement with the measured ratios from presolar SiC grains.Conclusion: The $^{22}\\mathrm{Ne}+\\phantom{\\rule{0.16em}{0ex}}\\ensuremath{\\alpha}$ reaction rates $^{22}\\mathrm{Ne}(\\ensuremath{\\alpha},\\ensuremath{\\gamma})^{26}\\mathrm{Mg}$ and $^{22}\\mathrm{Ne}(\\ensuremath{\\alpha}.n)^{25}\\mathrm{Mg}$ have been recalculated based on more recent nuclear data. The $^{22}\\mathrm{Ne}(\\ensuremath{\\alpha},\\ensuremath{\\gamma})^{26}\\mathrm{Mg}$ reaction rate remains substantially unchanged since the previous evaluation but the $^{22}\\mathrm{Ne}(\\ensuremath{\\alpha}.n)^{25}\\mathrm{Mg}$ reaction rate is substantially decreased due to updated nuclear data. This results in significant changes to the nucleosynthesis in the weak branch of the $s$ process.","PeriodicalId":48700,"journal":{"name":"Physical Review C","volume":"518 1","pages":"015805"},"PeriodicalIF":3.2000,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reevaluation of the \\nNe22(α,γ)Mg26\\n and \\nNe22(α,n)Mg25\\n reaction rates\",\"authors\":\"P. Adsley, U. Battino, A. Best, A. Caciolli, A. Guglielmetti, G. Imbriani, H. Jayatissa, M. La Cognata, L. Lamia, E. Masha, C. Massimi, S. Palmerini, A. Tattersall, R. Hirschi\",\"doi\":\"10.1103/PHYSREVC.103.015805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: The competing $^{22}\\\\mathrm{Ne}(\\\\ensuremath{\\\\alpha},\\\\ensuremath{\\\\gamma})^{26}\\\\mathrm{Mg}$ and $^{22}\\\\mathrm{Ne}(\\\\ensuremath{\\\\alpha},n)^{25}\\\\mathrm{Mg}$ reactions control the production of neutrons for the weak $s$ process in massive and asymptotic giant branch (AGB) stars. In both systems, the ratio between the corresponding reaction rates strongly impacts the total neutron budget and strongly influences the final nucleosynthesis. A number of experimental studies have been performed over recent years which necessitate the reevaluation of the $^{22}\\\\mathrm{Ne}(\\\\ensuremath{\\\\alpha},\\\\ensuremath{\\\\gamma})^{26}\\\\mathrm{Mg}$ and $^{22}\\\\mathrm{Ne}(\\\\ensuremath{\\\\alpha},n)^{25}\\\\mathrm{Mg}$ reaction rates. Evaluations of the reaction rates following the collection of new nuclear data presently show differences of up to a factor of 500, resulting in considerable uncertainty in the resulting nucleosynthesis.Purpose: To reevaluate the $^{22}\\\\mathrm{Ne}(\\\\ensuremath{\\\\alpha},\\\\ensuremath{\\\\gamma})^{26}\\\\mathrm{Mg}$ and $^{22}\\\\mathrm{Ne}(\\\\ensuremath{\\\\alpha},n)^{25}\\\\mathrm{Mg}$ reaction rates using updated nuclear data from a number of sources including updating spin and parity assignments.Methods: With updated spin and parity assignments, the levels which can contribute to the reaction rates are identified. The reaction rates are computed using a Monte Carlo method which has been used for previous evaluations of the reaction rates in order to focus solely on the changes due to modified nuclear data.Results: The evaluated $^{22}\\\\mathrm{Ne}(\\\\ensuremath{\\\\alpha},\\\\ensuremath{\\\\gamma})^{26}\\\\mathrm{Mg}$ reaction rate remains substantially similar to that of Longland et al. but, including recent results from Texas A, the $^{22}\\\\mathrm{Ne}(\\\\ensuremath{\\\\alpha},n)^{25}\\\\mathrm{Mg}$ reaction rate is lower at a range of astrophysically important temperatures. Stellar models computed with newton and mesa predict decreased production of the weak branch $s$ process due to the decreased efficiency of $^{22}\\\\mathrm{Ne}$ as a neutron source. Using the new reaction rates in the mesa model results in $^{96}\\\\mathrm{Zr}/^{94}\\\\mathrm{Zr}$ and $^{135}\\\\mathrm{Ba}/^{136}\\\\mathrm{Ba}$ ratios in much better agreement with the measured ratios from presolar SiC grains.Conclusion: The $^{22}\\\\mathrm{Ne}+\\\\phantom{\\\\rule{0.16em}{0ex}}\\\\ensuremath{\\\\alpha}$ reaction rates $^{22}\\\\mathrm{Ne}(\\\\ensuremath{\\\\alpha},\\\\ensuremath{\\\\gamma})^{26}\\\\mathrm{Mg}$ and $^{22}\\\\mathrm{Ne}(\\\\ensuremath{\\\\alpha}.n)^{25}\\\\mathrm{Mg}$ have been recalculated based on more recent nuclear data. The $^{22}\\\\mathrm{Ne}(\\\\ensuremath{\\\\alpha},\\\\ensuremath{\\\\gamma})^{26}\\\\mathrm{Mg}$ reaction rate remains substantially unchanged since the previous evaluation but the $^{22}\\\\mathrm{Ne}(\\\\ensuremath{\\\\alpha}.n)^{25}\\\\mathrm{Mg}$ reaction rate is substantially decreased due to updated nuclear data. This results in significant changes to the nucleosynthesis in the weak branch of the $s$ process.\",\"PeriodicalId\":48700,\"journal\":{\"name\":\"Physical Review C\",\"volume\":\"518 1\",\"pages\":\"015805\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2021-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review C\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVC.103.015805\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review C","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PHYSREVC.103.015805","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 3

摘要

背景:在大质量和渐近巨支(AGB)恒星中,相互竞争的$^{22}\mathrm{Ne}(\ensuremath{\alpha},\ensuremath{\gamma})^{26}\mathrm{Mg}$和$^{22}\mathrm{Ne}(\ensuremath{\alpha},n)^{25}\mathrm{Mg}$反应控制着弱$s$过程中中子的产生。在这两种体系中,相应反应速率之间的比值强烈地影响总中子收支,并强烈地影响最终的核合成。近年来进行了一些实验研究,有必要重新评估$^{22}\mathrm{Ne}(\ensuremath{\alpha},\ensuremath{\gamma})^{26}\mathrm{Mg}$和$^{22}\mathrm{Ne}(\ensuremath{\alpha},n)^{25}\mathrm{Mg}$的反应速率。目前在收集新的核数据后对反应速率进行的评价显示差异可达500倍,从而导致核合成的相当不确定。目的:利用更新的核数据(包括更新自旋和宇称赋值)重新评估$^{22}\mathrm{Ne}(\ensuremath{\alpha},\ensuremath{\gamma})^{26}\mathrm{Mg}$和$^{22}\mathrm{Ne}(\ensuremath{\alpha},n)^{25}\mathrm{Mg}$的反应速率。方法:通过更新自旋和宇称赋值,确定了影响反应速率的能级。反应速率是用蒙特卡罗方法计算的,这种方法以前用于评价反应速率,以便只关注由于核数据修改而引起的变化。结果:评估的$^{22}\mathrm{Ne}(\ensuremath{\alpha},\ensuremath{\gamma})^{26}\mathrm{Mg}$反应速率与Longland等人的反应速率基本相似,但是,包括德克萨斯州A的最新结果在内,$^{22}\mathrm{Ne}(\ensuremath{\alpha},n)^{25}\mathrm{Mg}$反应速率在天体物理重要温度范围内较低。用牛顿和梅萨计算的恒星模型预测,由于$^{22}\mathrm{Ne}$作为中子源的效率降低,弱分支$s$过程的产生会减少。在台地模型中使用新的反应速率,得到的$^{96}\mathrm{Zr}/^{94}\mathrm{Zr}$和$^{135}\mathrm{Ba}/^{136}\mathrm{Ba}$比值与太阳前碳化硅颗粒的实测比值吻合得更好。结论:根据最近的核数据重新计算了$^{22}\mathrm{Ne}+\phantom{\rule{0.16em}{0ex}}\ensuremath{\alpha}$反应速率$^{22}\mathrm{Ne}(\ensuremath{\alpha},\ensuremath{\gamma})^{26}\mathrm{Mg}$和$^{22}\mathrm{Ne}(\ensuremath{\alpha}.n)^{25}\mathrm{Mg}$。$^{22}\mathrm{Ne}(\ensuremath{\alpha},\ensuremath{\gamma})^{26}\mathrm{Mg}$反应速率自上次评估以来基本保持不变,但$^{22}\mathrm{Ne}(\ensuremath{\alpha}.n)^{25}\mathrm{Mg}$反应速率由于更新的核数据而大大降低。这导致$s$过程弱分支的核合成发生重大变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reevaluation of the Ne22(α,γ)Mg26 and Ne22(α,n)Mg25 reaction rates
Background: The competing $^{22}\mathrm{Ne}(\ensuremath{\alpha},\ensuremath{\gamma})^{26}\mathrm{Mg}$ and $^{22}\mathrm{Ne}(\ensuremath{\alpha},n)^{25}\mathrm{Mg}$ reactions control the production of neutrons for the weak $s$ process in massive and asymptotic giant branch (AGB) stars. In both systems, the ratio between the corresponding reaction rates strongly impacts the total neutron budget and strongly influences the final nucleosynthesis. A number of experimental studies have been performed over recent years which necessitate the reevaluation of the $^{22}\mathrm{Ne}(\ensuremath{\alpha},\ensuremath{\gamma})^{26}\mathrm{Mg}$ and $^{22}\mathrm{Ne}(\ensuremath{\alpha},n)^{25}\mathrm{Mg}$ reaction rates. Evaluations of the reaction rates following the collection of new nuclear data presently show differences of up to a factor of 500, resulting in considerable uncertainty in the resulting nucleosynthesis.Purpose: To reevaluate the $^{22}\mathrm{Ne}(\ensuremath{\alpha},\ensuremath{\gamma})^{26}\mathrm{Mg}$ and $^{22}\mathrm{Ne}(\ensuremath{\alpha},n)^{25}\mathrm{Mg}$ reaction rates using updated nuclear data from a number of sources including updating spin and parity assignments.Methods: With updated spin and parity assignments, the levels which can contribute to the reaction rates are identified. The reaction rates are computed using a Monte Carlo method which has been used for previous evaluations of the reaction rates in order to focus solely on the changes due to modified nuclear data.Results: The evaluated $^{22}\mathrm{Ne}(\ensuremath{\alpha},\ensuremath{\gamma})^{26}\mathrm{Mg}$ reaction rate remains substantially similar to that of Longland et al. but, including recent results from Texas A, the $^{22}\mathrm{Ne}(\ensuremath{\alpha},n)^{25}\mathrm{Mg}$ reaction rate is lower at a range of astrophysically important temperatures. Stellar models computed with newton and mesa predict decreased production of the weak branch $s$ process due to the decreased efficiency of $^{22}\mathrm{Ne}$ as a neutron source. Using the new reaction rates in the mesa model results in $^{96}\mathrm{Zr}/^{94}\mathrm{Zr}$ and $^{135}\mathrm{Ba}/^{136}\mathrm{Ba}$ ratios in much better agreement with the measured ratios from presolar SiC grains.Conclusion: The $^{22}\mathrm{Ne}+\phantom{\rule{0.16em}{0ex}}\ensuremath{\alpha}$ reaction rates $^{22}\mathrm{Ne}(\ensuremath{\alpha},\ensuremath{\gamma})^{26}\mathrm{Mg}$ and $^{22}\mathrm{Ne}(\ensuremath{\alpha}.n)^{25}\mathrm{Mg}$ have been recalculated based on more recent nuclear data. The $^{22}\mathrm{Ne}(\ensuremath{\alpha},\ensuremath{\gamma})^{26}\mathrm{Mg}$ reaction rate remains substantially unchanged since the previous evaluation but the $^{22}\mathrm{Ne}(\ensuremath{\alpha}.n)^{25}\mathrm{Mg}$ reaction rate is substantially decreased due to updated nuclear data. This results in significant changes to the nucleosynthesis in the weak branch of the $s$ process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review C
Physical Review C PHYSICS, NUCLEAR-
CiteScore
5.80
自引率
35.50%
发文量
863
期刊介绍: Physical Review C (PRC) is a leading journal in theoretical and experimental nuclear physics, publishing more than two-thirds of the research literature in the field. PRC covers experimental and theoretical results in all aspects of nuclear physics, including: Nucleon-nucleon interaction, few-body systems Nuclear structure Nuclear reactions Relativistic nuclear collisions Hadronic physics and QCD Electroweak interaction, symmetries Nuclear astrophysics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信