央行讲话能预测金融市场动荡吗?使用XGBoost机器学习技术的自适应NLP情绪指数分析的证据

IF 2 Q2 ECONOMICS
Anastasios Petropoulos, Vasilis Siakoulis
{"title":"央行讲话能预测金融市场动荡吗?使用XGBoost机器学习技术的自适应NLP情绪指数分析的证据","authors":"Anastasios Petropoulos,&nbsp;Vasilis Siakoulis","doi":"10.1016/j.cbrev.2021.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>Central Bank speeches usually function as aggregators of internal quantitative and qualitative analysis of the institutions regarding the macro economy, the monetary policy and the health of the financial systems. Speeches usually function as a summary of the current status of a countries economic health, the undergoing trends and some future perspectives of the global economy. In this study departing from classical econometrics we employ natural language processing technologies in combination with machine learning techniques in order to filter out the most important signals in the corpus of speeches and translate into a sentiment index for forecasting the future financial markets behaviour. In our analysis, it is evident that central banker's expectations on economy tend to exhibit a predictive ability for financial markets turmoil. Using a combination of dictionaries which are either predefined or build based on historical speeches of the corpus we train an Extreme Gradient Boosting model that generates a sentiment index which signals turmoil with acceptable accuracy when passing a specific threshold.</p></div>","PeriodicalId":43998,"journal":{"name":"Central Bank Review","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1303070121000329/pdfft?md5=8282b5122d51e90542e902eb362fe52a&pid=1-s2.0-S1303070121000329-main.pdf","citationCount":"11","resultStr":"{\"title\":\"Can central bank speeches predict financial market turbulence? Evidence from an adaptive NLP sentiment index analysis using XGBoost machine learning technique\",\"authors\":\"Anastasios Petropoulos,&nbsp;Vasilis Siakoulis\",\"doi\":\"10.1016/j.cbrev.2021.12.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Central Bank speeches usually function as aggregators of internal quantitative and qualitative analysis of the institutions regarding the macro economy, the monetary policy and the health of the financial systems. Speeches usually function as a summary of the current status of a countries economic health, the undergoing trends and some future perspectives of the global economy. In this study departing from classical econometrics we employ natural language processing technologies in combination with machine learning techniques in order to filter out the most important signals in the corpus of speeches and translate into a sentiment index for forecasting the future financial markets behaviour. In our analysis, it is evident that central banker's expectations on economy tend to exhibit a predictive ability for financial markets turmoil. Using a combination of dictionaries which are either predefined or build based on historical speeches of the corpus we train an Extreme Gradient Boosting model that generates a sentiment index which signals turmoil with acceptable accuracy when passing a specific threshold.</p></div>\",\"PeriodicalId\":43998,\"journal\":{\"name\":\"Central Bank Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1303070121000329/pdfft?md5=8282b5122d51e90542e902eb362fe52a&pid=1-s2.0-S1303070121000329-main.pdf\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central Bank Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1303070121000329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central Bank Review","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1303070121000329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 11

摘要

中央银行的演讲通常是对宏观经济、货币政策和金融体系健康状况的机构进行内部定量和定性分析的集合。发言的作用通常是总结一个国家的经济健康现状、正在发生的趋势和全球经济的一些未来前景。在这项脱离经典计量经济学的研究中,我们将自然语言处理技术与机器学习技术相结合,以过滤出演讲语料库中最重要的信号,并将其转化为预测未来金融市场行为的情绪指数。在我们的分析中,很明显,央行对经济的预期往往表现出对金融市场动荡的预测能力。使用预定义或基于语料库历史演讲的词典组合,我们训练了一个极端梯度增强模型,该模型生成一个情绪指数,当超过特定阈值时,该指数以可接受的精度表示动荡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Can central bank speeches predict financial market turbulence? Evidence from an adaptive NLP sentiment index analysis using XGBoost machine learning technique

Central Bank speeches usually function as aggregators of internal quantitative and qualitative analysis of the institutions regarding the macro economy, the monetary policy and the health of the financial systems. Speeches usually function as a summary of the current status of a countries economic health, the undergoing trends and some future perspectives of the global economy. In this study departing from classical econometrics we employ natural language processing technologies in combination with machine learning techniques in order to filter out the most important signals in the corpus of speeches and translate into a sentiment index for forecasting the future financial markets behaviour. In our analysis, it is evident that central banker's expectations on economy tend to exhibit a predictive ability for financial markets turmoil. Using a combination of dictionaries which are either predefined or build based on historical speeches of the corpus we train an Extreme Gradient Boosting model that generates a sentiment index which signals turmoil with acceptable accuracy when passing a specific threshold.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Central Bank Review
Central Bank Review ECONOMICS-
CiteScore
5.10
自引率
0.00%
发文量
9
审稿时长
69 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信