关于CSP环的说明

IF 0.7 4区 数学 Q2 MATHEMATICS
Haitao Ma, L. Shen
{"title":"关于CSP环的说明","authors":"Haitao Ma, L. Shen","doi":"10.15672/hujms.1213444","DOIUrl":null,"url":null,"abstract":"Let $R$ be an associative ring. $R$ is called right CSP if the sum of any two closed right ideals of $R$ is also a closed right ideal of $R$. Left CSP rings can be defined similarly. It is shown that a matrix ring over a right CSP ring may not be right CSP. And $\\mathbb{M}_{2}(R)$ is right CSP if and only if $R$ is right self-injective and von Neumann regular. This informs that a left CSP ring may not be right CSP. At last, an equivalent characterization is given for the trivial extension $R\\propto R$ of $R$ to be right CSP.","PeriodicalId":55078,"journal":{"name":"Hacettepe Journal of Mathematics and Statistics","volume":"516 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on CSP rings\",\"authors\":\"Haitao Ma, L. Shen\",\"doi\":\"10.15672/hujms.1213444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R$ be an associative ring. $R$ is called right CSP if the sum of any two closed right ideals of $R$ is also a closed right ideal of $R$. Left CSP rings can be defined similarly. It is shown that a matrix ring over a right CSP ring may not be right CSP. And $\\\\mathbb{M}_{2}(R)$ is right CSP if and only if $R$ is right self-injective and von Neumann regular. This informs that a left CSP ring may not be right CSP. At last, an equivalent characterization is given for the trivial extension $R\\\\propto R$ of $R$ to be right CSP.\",\"PeriodicalId\":55078,\"journal\":{\"name\":\"Hacettepe Journal of Mathematics and Statistics\",\"volume\":\"516 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hacettepe Journal of Mathematics and Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15672/hujms.1213444\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hacettepe Journal of Mathematics and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15672/hujms.1213444","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$R$是一个结合环。如果R$的任意两个封闭右理想的和也是R$的封闭右理想,则R$称为右CSP。左CSP环可以类似地定义。证明了右CSP环上的矩阵环可能不是右CSP环。并且$\mathbb{M}_{2}(R)$是正确的CSP当且仅当$R$是正确的自内射和冯·诺伊曼正则。这说明左CSP环可能不是右CSP环。最后,给出了$R$的平凡扩展$R\ proto R$为右CSP的等价刻画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on CSP rings
Let $R$ be an associative ring. $R$ is called right CSP if the sum of any two closed right ideals of $R$ is also a closed right ideal of $R$. Left CSP rings can be defined similarly. It is shown that a matrix ring over a right CSP ring may not be right CSP. And $\mathbb{M}_{2}(R)$ is right CSP if and only if $R$ is right self-injective and von Neumann regular. This informs that a left CSP ring may not be right CSP. At last, an equivalent characterization is given for the trivial extension $R\propto R$ of $R$ to be right CSP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
100
审稿时长
6-12 weeks
期刊介绍: Hacettepe Journal of Mathematics and Statistics covers all aspects of Mathematics and Statistics. Papers on the interface between Mathematics and Statistics are particularly welcome, including applications to Physics, Actuarial Sciences, Finance and Economics. We strongly encourage submissions for Statistics Section including current and important real world examples across a wide range of disciplines. Papers have innovations of statistical methodology are highly welcome. Purely theoretical papers may be considered only if they include popular real world applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信