R. Ganapathy Srinivasan, N. Pragadish, E. Esakkiraj, M. Selvam, C. Rajaravi
{"title":"纳米粘土碱处理椰壳增强复合材料摩擦学分析","authors":"R. Ganapathy Srinivasan, N. Pragadish, E. Esakkiraj, M. Selvam, C. Rajaravi","doi":"10.1177/26349833231189516","DOIUrl":null,"url":null,"abstract":"This research paper focuses on the tribology analysis of MMT - Montmorillonite nanoclay alkali-treated coconut sheath reinforced hybrid composite. The study aims to analyze the mechanical properties of coconut sheath reinforced polymer composites as compared to traditional synthetic fibers. The specific impact of MMT clay on the material’s mechanical properties is also considered. The experimental method involves the use of compression molding for fabrication, and various treatments are applied to the coconut sheath to improve its mechanical properties. The microstructure, tensile, flexural, and impact characterization of the specimens are analyzed. The results indicate that alkali-treated coconut sheath outperforms untreated coconut sheath in terms of surface quality. Additionally, the addition of MMT clay improves the bonding and surface area coverage, resulting in better mechanical properties. However, the brittleness of the treated coconut sheath specimen increased, reducing its energy absorption in impact tests. Overall, the study highlights the potential of coconut sheath as a natural fiber reinforcement for polymer composites and the impact of MMT clay on its mechanical properties.","PeriodicalId":10608,"journal":{"name":"Composites and Advanced Materials","volume":"515 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tribology analysis of MMT nanoclay alkali-treated coconut sheath reinforced hybrid composite\",\"authors\":\"R. Ganapathy Srinivasan, N. Pragadish, E. Esakkiraj, M. Selvam, C. Rajaravi\",\"doi\":\"10.1177/26349833231189516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research paper focuses on the tribology analysis of MMT - Montmorillonite nanoclay alkali-treated coconut sheath reinforced hybrid composite. The study aims to analyze the mechanical properties of coconut sheath reinforced polymer composites as compared to traditional synthetic fibers. The specific impact of MMT clay on the material’s mechanical properties is also considered. The experimental method involves the use of compression molding for fabrication, and various treatments are applied to the coconut sheath to improve its mechanical properties. The microstructure, tensile, flexural, and impact characterization of the specimens are analyzed. The results indicate that alkali-treated coconut sheath outperforms untreated coconut sheath in terms of surface quality. Additionally, the addition of MMT clay improves the bonding and surface area coverage, resulting in better mechanical properties. However, the brittleness of the treated coconut sheath specimen increased, reducing its energy absorption in impact tests. Overall, the study highlights the potential of coconut sheath as a natural fiber reinforcement for polymer composites and the impact of MMT clay on its mechanical properties.\",\"PeriodicalId\":10608,\"journal\":{\"name\":\"Composites and Advanced Materials\",\"volume\":\"515 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites and Advanced Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/26349833231189516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites and Advanced Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/26349833231189516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This research paper focuses on the tribology analysis of MMT - Montmorillonite nanoclay alkali-treated coconut sheath reinforced hybrid composite. The study aims to analyze the mechanical properties of coconut sheath reinforced polymer composites as compared to traditional synthetic fibers. The specific impact of MMT clay on the material’s mechanical properties is also considered. The experimental method involves the use of compression molding for fabrication, and various treatments are applied to the coconut sheath to improve its mechanical properties. The microstructure, tensile, flexural, and impact characterization of the specimens are analyzed. The results indicate that alkali-treated coconut sheath outperforms untreated coconut sheath in terms of surface quality. Additionally, the addition of MMT clay improves the bonding and surface area coverage, resulting in better mechanical properties. However, the brittleness of the treated coconut sheath specimen increased, reducing its energy absorption in impact tests. Overall, the study highlights the potential of coconut sheath as a natural fiber reinforcement for polymer composites and the impact of MMT clay on its mechanical properties.