分形介质中广义传递方程的实现

R. Nigmatullin
{"title":"分形介质中广义传递方程的实现","authors":"R. Nigmatullin","doi":"10.1002/PSSB.2221330150","DOIUrl":null,"url":null,"abstract":"It is shown that in a medium representing an example of “Koch's tree”-type fractional structure the diffusion process is described by a generalized transfer equation in partial derivations. Such a structure can serve as a model of a porous medium where the diffusion process takes place. The geometry of an inhomogeneous medium can serve as the dicisive factor in the explanation of the “universal response” phenomenon. A range of frequencies is found where such “superslow” diffusion process can be observed. \n \n \n \n[Russian Text Ignored].","PeriodicalId":11087,"journal":{"name":"Day 1 Tue, January 11, 2022","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"1986-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"623","resultStr":"{\"title\":\"The Realization of the Generalized Transfer Equation in a Medium with Fractal Geometry\",\"authors\":\"R. Nigmatullin\",\"doi\":\"10.1002/PSSB.2221330150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown that in a medium representing an example of “Koch's tree”-type fractional structure the diffusion process is described by a generalized transfer equation in partial derivations. Such a structure can serve as a model of a porous medium where the diffusion process takes place. The geometry of an inhomogeneous medium can serve as the dicisive factor in the explanation of the “universal response” phenomenon. A range of frequencies is found where such “superslow” diffusion process can be observed. \\n \\n \\n \\n[Russian Text Ignored].\",\"PeriodicalId\":11087,\"journal\":{\"name\":\"Day 1 Tue, January 11, 2022\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"623\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Tue, January 11, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/PSSB.2221330150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, January 11, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/PSSB.2221330150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 623

摘要

结果表明,在具有“科赫树”型分数阶结构的介质中,扩散过程可以用偏导数的广义传递方程来描述。这种结构可以作为扩散过程发生的多孔介质的模型。非均匀介质的几何结构可以作为解释“普遍响应”现象的决定性因素。在一定频率范围内,可以观察到这种“超慢”扩散过程。[忽略俄语文本]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Realization of the Generalized Transfer Equation in a Medium with Fractal Geometry
It is shown that in a medium representing an example of “Koch's tree”-type fractional structure the diffusion process is described by a generalized transfer equation in partial derivations. Such a structure can serve as a model of a porous medium where the diffusion process takes place. The geometry of an inhomogeneous medium can serve as the dicisive factor in the explanation of the “universal response” phenomenon. A range of frequencies is found where such “superslow” diffusion process can be observed. [Russian Text Ignored].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信