能源系统数据挖掘:回顾与展望

IF 6.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wenxuan Liu, Junhua Zhao, Dianhui Wang
{"title":"能源系统数据挖掘:回顾与展望","authors":"Wenxuan Liu, Junhua Zhao, Dianhui Wang","doi":"10.1002/widm.1406","DOIUrl":null,"url":null,"abstract":"An in‐depth study on big data mining is urgently needed for the next‐generation energy systems, which are characterized by a deep integration of cyber, physical, and social components. This paper presents an initial discussion on big data mining and its applications in intelligent energy systems. New progress in big data mining, such as deep learning, transfer learning, randomized learning, granular computing, and multisource data fusion, is introduced first. Some applications of data mining in energy systems, such as load forecasting and modeling, integrated power and transportation system, and electricity market forecasting and simulation, are discussed then. Moreover, some research problems in energy system data mining, such as cyber–physical–social system modeling and super‐resolution perception for smart meter data, which require further attention in the future, are also discussed.","PeriodicalId":48970,"journal":{"name":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","volume":"1 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Data mining for energy systems: Review and prospect\",\"authors\":\"Wenxuan Liu, Junhua Zhao, Dianhui Wang\",\"doi\":\"10.1002/widm.1406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An in‐depth study on big data mining is urgently needed for the next‐generation energy systems, which are characterized by a deep integration of cyber, physical, and social components. This paper presents an initial discussion on big data mining and its applications in intelligent energy systems. New progress in big data mining, such as deep learning, transfer learning, randomized learning, granular computing, and multisource data fusion, is introduced first. Some applications of data mining in energy systems, such as load forecasting and modeling, integrated power and transportation system, and electricity market forecasting and simulation, are discussed then. Moreover, some research problems in energy system data mining, such as cyber–physical–social system modeling and super‐resolution perception for smart meter data, which require further attention in the future, are also discussed.\",\"PeriodicalId\":48970,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2021-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/widm.1406\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/widm.1406","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 5

摘要

下一代能源系统的特点是网络、物理和社会组件的深度集成,迫切需要对大数据挖掘进行深入研究。本文对大数据挖掘及其在智能能源系统中的应用进行了初步探讨。首先介绍了大数据挖掘的新进展,如深度学习、迁移学习、随机学习、颗粒计算、多源数据融合等。讨论了数据挖掘在负荷预测与建模、电力运输一体化系统、电力市场预测与仿真等能源系统中的应用。此外,还讨论了能源系统数据挖掘中需要进一步关注的一些研究问题,如网络-物理-社会系统建模和智能电表数据的超分辨率感知。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data mining for energy systems: Review and prospect
An in‐depth study on big data mining is urgently needed for the next‐generation energy systems, which are characterized by a deep integration of cyber, physical, and social components. This paper presents an initial discussion on big data mining and its applications in intelligent energy systems. New progress in big data mining, such as deep learning, transfer learning, randomized learning, granular computing, and multisource data fusion, is introduced first. Some applications of data mining in energy systems, such as load forecasting and modeling, integrated power and transportation system, and electricity market forecasting and simulation, are discussed then. Moreover, some research problems in energy system data mining, such as cyber–physical–social system modeling and super‐resolution perception for smart meter data, which require further attention in the future, are also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery
Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
22.70
自引率
2.60%
发文量
39
审稿时长
>12 weeks
期刊介绍: The goals of Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery (WIREs DMKD) are multifaceted. Firstly, the journal aims to provide a comprehensive overview of the current state of data mining and knowledge discovery by featuring ongoing reviews authored by leading researchers. Secondly, it seeks to highlight the interdisciplinary nature of the field by presenting articles from diverse perspectives, covering various application areas such as technology, business, healthcare, education, government, society, and culture. Thirdly, WIREs DMKD endeavors to keep pace with the rapid advancements in data mining and knowledge discovery through regular content updates. Lastly, the journal strives to promote active engagement in the field by presenting its accomplishments and challenges in an accessible manner to a broad audience. The content of WIREs DMKD is intended to benefit upper-level undergraduate and postgraduate students, teaching and research professors in academic programs, as well as scientists and research managers in industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信