H. Chiang, T. C. Chen, J. F. Wang, S. Mukhopadhyay, W. K. Lee, C. Chen, W. Khwa, B. Pulicherla, P. Liao, K. Su, K. F. Yu, T. Wang, H. P. Wong, C. Diaz, J. Cai
{"title":"冷CMOS作为先进finfet的功率-性能-可靠性助推器","authors":"H. Chiang, T. C. Chen, J. F. Wang, S. Mukhopadhyay, W. K. Lee, C. Chen, W. Khwa, B. Pulicherla, P. Liao, K. Su, K. F. Yu, T. Wang, H. P. Wong, C. Diaz, J. Cai","doi":"10.1109/VLSITechnology18217.2020.9265065","DOIUrl":null,"url":null,"abstract":"We present advanced FinFET characterization and circuit analysis at reduced temperatures down to 77 K. Steepened subthreshold slope enables threshold voltage $(V_{\\mathrm{TH}})$ and supply voltage $(V_{\\mathrm{DD}})$ scaling for $\\sim 0.27\\times$ power reduction without sacrificing logic switching speed. With simultaneous $V_{\\mathrm{TH}}$ scaling, SRAM can operate at the same low $V_{\\mathrm{DD}}$ of 0 4V. Improved gate dielectric reliability raises maximum $V_{\\mathrm{DE}}$ for $gt; 70\\%$ speed boost when single thread performance is needed. Taking advantage of lower Cu wire resistance at 77 K, the repeaters for global signal propagation can be redesigned for 80% energy reduction. Increased thermal conductivity of silicon at low temperature reduces self-heating and further improves power efficiency. When refrigeration power is included, net power reduction can be achieved when cooling efficiency exceeds $\\sim$ 50% of Carnot limit. We present effective $V_{\\mathrm{TH}}$ reduction methods for both nFET and pFET, critical for attaining high performance for cold CMOS.","PeriodicalId":6850,"journal":{"name":"2020 IEEE Symposium on VLSI Technology","volume":"38 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Cold CMOS as a Power-Performance-Reliability Booster for Advanced FinFETs\",\"authors\":\"H. Chiang, T. C. Chen, J. F. Wang, S. Mukhopadhyay, W. K. Lee, C. Chen, W. Khwa, B. Pulicherla, P. Liao, K. Su, K. F. Yu, T. Wang, H. P. Wong, C. Diaz, J. Cai\",\"doi\":\"10.1109/VLSITechnology18217.2020.9265065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present advanced FinFET characterization and circuit analysis at reduced temperatures down to 77 K. Steepened subthreshold slope enables threshold voltage $(V_{\\\\mathrm{TH}})$ and supply voltage $(V_{\\\\mathrm{DD}})$ scaling for $\\\\sim 0.27\\\\times$ power reduction without sacrificing logic switching speed. With simultaneous $V_{\\\\mathrm{TH}}$ scaling, SRAM can operate at the same low $V_{\\\\mathrm{DD}}$ of 0 4V. Improved gate dielectric reliability raises maximum $V_{\\\\mathrm{DE}}$ for $gt; 70\\\\%$ speed boost when single thread performance is needed. Taking advantage of lower Cu wire resistance at 77 K, the repeaters for global signal propagation can be redesigned for 80% energy reduction. Increased thermal conductivity of silicon at low temperature reduces self-heating and further improves power efficiency. When refrigeration power is included, net power reduction can be achieved when cooling efficiency exceeds $\\\\sim$ 50% of Carnot limit. We present effective $V_{\\\\mathrm{TH}}$ reduction methods for both nFET and pFET, critical for attaining high performance for cold CMOS.\",\"PeriodicalId\":6850,\"journal\":{\"name\":\"2020 IEEE Symposium on VLSI Technology\",\"volume\":\"38 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSITechnology18217.2020.9265065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSITechnology18217.2020.9265065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cold CMOS as a Power-Performance-Reliability Booster for Advanced FinFETs
We present advanced FinFET characterization and circuit analysis at reduced temperatures down to 77 K. Steepened subthreshold slope enables threshold voltage $(V_{\mathrm{TH}})$ and supply voltage $(V_{\mathrm{DD}})$ scaling for $\sim 0.27\times$ power reduction without sacrificing logic switching speed. With simultaneous $V_{\mathrm{TH}}$ scaling, SRAM can operate at the same low $V_{\mathrm{DD}}$ of 0 4V. Improved gate dielectric reliability raises maximum $V_{\mathrm{DE}}$ for $gt; 70\%$ speed boost when single thread performance is needed. Taking advantage of lower Cu wire resistance at 77 K, the repeaters for global signal propagation can be redesigned for 80% energy reduction. Increased thermal conductivity of silicon at low temperature reduces self-heating and further improves power efficiency. When refrigeration power is included, net power reduction can be achieved when cooling efficiency exceeds $\sim$ 50% of Carnot limit. We present effective $V_{\mathrm{TH}}$ reduction methods for both nFET and pFET, critical for attaining high performance for cold CMOS.