冷CMOS作为先进finfet的功率-性能-可靠性助推器

H. Chiang, T. C. Chen, J. F. Wang, S. Mukhopadhyay, W. K. Lee, C. Chen, W. Khwa, B. Pulicherla, P. Liao, K. Su, K. F. Yu, T. Wang, H. P. Wong, C. Diaz, J. Cai
{"title":"冷CMOS作为先进finfet的功率-性能-可靠性助推器","authors":"H. Chiang, T. C. Chen, J. F. Wang, S. Mukhopadhyay, W. K. Lee, C. Chen, W. Khwa, B. Pulicherla, P. Liao, K. Su, K. F. Yu, T. Wang, H. P. Wong, C. Diaz, J. Cai","doi":"10.1109/VLSITechnology18217.2020.9265065","DOIUrl":null,"url":null,"abstract":"We present advanced FinFET characterization and circuit analysis at reduced temperatures down to 77 K. Steepened subthreshold slope enables threshold voltage $(V_{\\mathrm{TH}})$ and supply voltage $(V_{\\mathrm{DD}})$ scaling for $\\sim 0.27\\times$ power reduction without sacrificing logic switching speed. With simultaneous $V_{\\mathrm{TH}}$ scaling, SRAM can operate at the same low $V_{\\mathrm{DD}}$ of 0 4V. Improved gate dielectric reliability raises maximum $V_{\\mathrm{DE}}$ for $gt; 70\\%$ speed boost when single thread performance is needed. Taking advantage of lower Cu wire resistance at 77 K, the repeaters for global signal propagation can be redesigned for 80% energy reduction. Increased thermal conductivity of silicon at low temperature reduces self-heating and further improves power efficiency. When refrigeration power is included, net power reduction can be achieved when cooling efficiency exceeds $\\sim$ 50% of Carnot limit. We present effective $V_{\\mathrm{TH}}$ reduction methods for both nFET and pFET, critical for attaining high performance for cold CMOS.","PeriodicalId":6850,"journal":{"name":"2020 IEEE Symposium on VLSI Technology","volume":"38 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Cold CMOS as a Power-Performance-Reliability Booster for Advanced FinFETs\",\"authors\":\"H. Chiang, T. C. Chen, J. F. Wang, S. Mukhopadhyay, W. K. Lee, C. Chen, W. Khwa, B. Pulicherla, P. Liao, K. Su, K. F. Yu, T. Wang, H. P. Wong, C. Diaz, J. Cai\",\"doi\":\"10.1109/VLSITechnology18217.2020.9265065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present advanced FinFET characterization and circuit analysis at reduced temperatures down to 77 K. Steepened subthreshold slope enables threshold voltage $(V_{\\\\mathrm{TH}})$ and supply voltage $(V_{\\\\mathrm{DD}})$ scaling for $\\\\sim 0.27\\\\times$ power reduction without sacrificing logic switching speed. With simultaneous $V_{\\\\mathrm{TH}}$ scaling, SRAM can operate at the same low $V_{\\\\mathrm{DD}}$ of 0 4V. Improved gate dielectric reliability raises maximum $V_{\\\\mathrm{DE}}$ for $gt; 70\\\\%$ speed boost when single thread performance is needed. Taking advantage of lower Cu wire resistance at 77 K, the repeaters for global signal propagation can be redesigned for 80% energy reduction. Increased thermal conductivity of silicon at low temperature reduces self-heating and further improves power efficiency. When refrigeration power is included, net power reduction can be achieved when cooling efficiency exceeds $\\\\sim$ 50% of Carnot limit. We present effective $V_{\\\\mathrm{TH}}$ reduction methods for both nFET and pFET, critical for attaining high performance for cold CMOS.\",\"PeriodicalId\":6850,\"journal\":{\"name\":\"2020 IEEE Symposium on VLSI Technology\",\"volume\":\"38 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSITechnology18217.2020.9265065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSITechnology18217.2020.9265065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

我们提出了先进的FinFET特性和电路分析,温度降低到77 K。陡峭的亚阈值斜率使阈值电压$(V_{\mathrm{TH}})$和电源电压$(V_{\mathrm{DD}})$缩放,在不牺牲逻辑开关速度的情况下降低$\sim 0.27倍的功耗。通过同时进行$V_{\ mathm {TH}}$缩放,SRAM可以在同样低的$V_{\ mathm {DD}}$ 0 4V下工作。栅极介电可靠性的改进提高了$V_{\ mathm {DE}}$的最大值;当需要单线程性能时,速度提高70 %。利用77k时较低的铜线电阻,可以重新设计用于全球信号传播的中继器,减少80%的能量。硅在低温下的热导率增加,减少了自热,进一步提高了功率效率。当包括制冷功率时,当冷却效率超过卡诺极限的50%时,可以实现净功率减少。我们提出了有效的$V_{\ mathm {TH}}$减少方法,用于nFET和fet,这对于实现冷CMOS的高性能至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cold CMOS as a Power-Performance-Reliability Booster for Advanced FinFETs
We present advanced FinFET characterization and circuit analysis at reduced temperatures down to 77 K. Steepened subthreshold slope enables threshold voltage $(V_{\mathrm{TH}})$ and supply voltage $(V_{\mathrm{DD}})$ scaling for $\sim 0.27\times$ power reduction without sacrificing logic switching speed. With simultaneous $V_{\mathrm{TH}}$ scaling, SRAM can operate at the same low $V_{\mathrm{DD}}$ of 0 4V. Improved gate dielectric reliability raises maximum $V_{\mathrm{DE}}$ for $gt; 70\%$ speed boost when single thread performance is needed. Taking advantage of lower Cu wire resistance at 77 K, the repeaters for global signal propagation can be redesigned for 80% energy reduction. Increased thermal conductivity of silicon at low temperature reduces self-heating and further improves power efficiency. When refrigeration power is included, net power reduction can be achieved when cooling efficiency exceeds $\sim$ 50% of Carnot limit. We present effective $V_{\mathrm{TH}}$ reduction methods for both nFET and pFET, critical for attaining high performance for cold CMOS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信