具有迭代变轨迹跟踪的二维线性FMMI系统的高阶内模迭代学习控制

Kai Wan, Xiao-dong Li
{"title":"具有迭代变轨迹跟踪的二维线性FMMI系统的高阶内模迭代学习控制","authors":"Kai Wan, Xiao-dong Li","doi":"10.1109/TSMC.2019.2897459","DOIUrl":null,"url":null,"abstract":"This paper is concerned with iterative learning control (ILC) algorithms for two-dimensional (2-D) linear discrete systems described by the first Fornasini–Marchesini model (FMMI) with iteration-varying reference trajectories/profiles. The variation of reference trajectories in iteration domain is represented by a high-order internal model (HOIM) formula. Robustness and convergence of two types of HOIM-based ILC laws with different boundary conditions are investigated, respectively. A strategy employed in this paper is to reconstruct the HOIM-based ILC process of the 2-D linear FMMI system into a set of 2-D linear inequalities or a 2-D linear Roesser model such that sufficient robustness/convergence conditions of the HOIM-based ILC laws are obtained. Under random boundary conditions, the designed ILC law (9) is capable to drive the ILC tracking error into a bounded range. Moreover, under the HOIM-based boundary conditions, a perfect tracking to the iteration-varying reference trajectories can be achieved by utilizing the proposed ILC law (32). Two simulation examples are given to validate the effectiveness of the two proposed ILC algorithms.","PeriodicalId":55007,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans","volume":"16 1","pages":"1462-1472"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"High-Order Internal Model-Based Iterative Learning Control for 2-D Linear FMMI Systems With Iteration-Varying Trajectory Tracking\",\"authors\":\"Kai Wan, Xiao-dong Li\",\"doi\":\"10.1109/TSMC.2019.2897459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with iterative learning control (ILC) algorithms for two-dimensional (2-D) linear discrete systems described by the first Fornasini–Marchesini model (FMMI) with iteration-varying reference trajectories/profiles. The variation of reference trajectories in iteration domain is represented by a high-order internal model (HOIM) formula. Robustness and convergence of two types of HOIM-based ILC laws with different boundary conditions are investigated, respectively. A strategy employed in this paper is to reconstruct the HOIM-based ILC process of the 2-D linear FMMI system into a set of 2-D linear inequalities or a 2-D linear Roesser model such that sufficient robustness/convergence conditions of the HOIM-based ILC laws are obtained. Under random boundary conditions, the designed ILC law (9) is capable to drive the ILC tracking error into a bounded range. Moreover, under the HOIM-based boundary conditions, a perfect tracking to the iteration-varying reference trajectories can be achieved by utilizing the proposed ILC law (32). Two simulation examples are given to validate the effectiveness of the two proposed ILC algorithms.\",\"PeriodicalId\":55007,\"journal\":{\"name\":\"IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans\",\"volume\":\"16 1\",\"pages\":\"1462-1472\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSMC.2019.2897459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMC.2019.2897459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

本文研究了具有迭代变化参考轨迹/轮廓的第一个Fornasini-Marchesini模型(FMMI)所描述的二维线性离散系统的迭代学习控制(ILC)算法。参考轨迹在迭代域的变化用高阶内模(HOIM)公式表示。研究了不同边界条件下两类基于hoim的ILC律的鲁棒性和收敛性。本文采用的策略是将二维线性FMMI系统的基于hoim的ILC过程重构为一组二维线性不等式或二维线性Roesser模型,从而获得基于hoim的ILC律的充分鲁棒性/收敛性条件。在随机边界条件下,所设计的ILC律(9)能够将ILC跟踪误差驱动到有界范围内。此外,在基于hoim的边界条件下,利用所提出的ILC定律可以实现对迭代变化参考轨迹的完美跟踪(32)。通过两个仿真实例验证了所提出的两种ILC算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Order Internal Model-Based Iterative Learning Control for 2-D Linear FMMI Systems With Iteration-Varying Trajectory Tracking
This paper is concerned with iterative learning control (ILC) algorithms for two-dimensional (2-D) linear discrete systems described by the first Fornasini–Marchesini model (FMMI) with iteration-varying reference trajectories/profiles. The variation of reference trajectories in iteration domain is represented by a high-order internal model (HOIM) formula. Robustness and convergence of two types of HOIM-based ILC laws with different boundary conditions are investigated, respectively. A strategy employed in this paper is to reconstruct the HOIM-based ILC process of the 2-D linear FMMI system into a set of 2-D linear inequalities or a 2-D linear Roesser model such that sufficient robustness/convergence conditions of the HOIM-based ILC laws are obtained. Under random boundary conditions, the designed ILC law (9) is capable to drive the ILC tracking error into a bounded range. Moreover, under the HOIM-based boundary conditions, a perfect tracking to the iteration-varying reference trajectories can be achieved by utilizing the proposed ILC law (32). Two simulation examples are given to validate the effectiveness of the two proposed ILC algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1
审稿时长
6.0 months
期刊介绍: The scope of the IEEE Transactions on Systems, Man, and Cybernetics: Systems includes the fields of systems engineering. It includes issue formulation, analysis and modeling, decision making, and issue interpretation for any of the systems engineering lifecycle phases associated with the definition, development, and deployment of large systems. In addition, it includes systems management, systems engineering processes, and a variety of systems engineering methods such as optimization, modeling and simulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信